Abelian varieties over finite fields isogenous to a power

Marseglia Stefano

MPI/Stockholms University

16 October 2018 - IRMAR

Today's plan:

- Brief review of the material.
- AV A isogenous to B^r , for B ordinary square-free defined over \mathbb{F}_q .
- Isomorphism classes.
- Polarizations.
- Computations of polarizations and period matrices (r = 1).

Abelian varieties (\mathbb{C} vs \mathbb{F}_q)

- Goal: compute isomorphism classes of abelian varieties over a finite field F_q.
- in dimension g > 1 it is not easy to produce equations.
- for g > 3 it is not enough to consider Jacobians.
- over C:

$$\{\text{abelian varieties } / \mathbb{C}\} \longleftrightarrow \begin{cases} \mathbb{C}^g / L \text{ with } L \simeq \mathbb{Z}^{2g} \\ + \text{ Riemann form} \end{cases} \}.$$

• in positive characteristic we don't have such equivalence (on the whole category).

Recall

- for an abelian variety A/\mathbb{F}_q there are simple B_i and positive integers e_i s.t.
 - $A \sim_{\mathbb{F}_q} B_1^{e_1} \times \ldots \times B_s^{e_s}$ Poincaré decomposition
- If h_A is the characteristic polynomial of Frobenius π_A (acting on T_IA, for some l ≠ p) then
 - $h_A \in \mathbb{Z}[x]$ and roots of size \sqrt{q} q-Weil polynomial

•
$$h_A = h_{B_1}^{e_1} \cdots h_{B_s}^{e_s}$$

• $\deg h_A = 2 \dim A$.

Theorem (Honda-Tate)

There is a bijection betweeen the set of simple abelian varieties over \mathbb{F}_q up to isogeny and the set of q-Weil numbers up to conjugacy.

Ordinary AV

An abelian variety A/\mathbb{F}_q of dimension g is called ordinary if one of the following equivalent conditions holds:

- (a) $A[p](\overline{\mathbb{F}}_p) \simeq \left(\mathbb{Z}/p_{\mathbb{Z}}\right)^g$ (i.e. the max possible)
- (b) exactly half of the roots of h_A over $\overline{\mathbb{Q}}_p$ are *p*-adic units
- (c) the mid-coefficient of h_A is coprime with p

Proposition

For *B* ordinary over \mathbb{F}_q :

h_B is irreducible $\iff B$ is simple

Theorem (Deligne '69)

Let $q = p^d$, with p a prime. There is an equivalence of categories:

$$AV^{ord}(q) := \{ Ordinary \text{ abelian varieties over } \mathbb{F}_q \}$$

$$\downarrow$$

$$\mathcal{M}^{ord}(q) := \begin{cases} pairs (T, F), \text{ where } T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g} \text{ and } T \xrightarrow{F} T \text{ s.t.} \\ -F \otimes \mathbb{Q} \text{ is semisimple} \\ - \text{ the roots of } \operatorname{char}_{F \otimes \mathbb{Q}}(x) \text{ have abs. value } \sqrt{q} \\ - \text{ half of them are } p\text{-adic units} \\ -\exists V: T \to T \text{ such that } FV = VF = q \end{cases}$$

- fix an embedding of $\varepsilon : W = W(\overline{\mathbb{F}}_p) \hookrightarrow \mathbb{C}$
- take $A \in AV^{ord}(q)$
- let A' be the canonical lift of A to W
- put $A_{\mathbb{C}} := A' \otimes_{\varepsilon} \mathbb{C}$
- finally, let $T(A) := H_1(A_{\mathbb{C}}, \mathbb{Z})$
- the construction is functorial: Frobenius $\pi(A) \rightsquigarrow F(A)$.

Observe if dim(A) = g then Rank(T(A)) = 2g;

Today's setup:

let g be a q-Weil polynomial which is ordinary and square-free Put $AV(g^r) := \left\{ A \in AV^{ord}(q) : h_A = g^r \right\}$

and

$$\mathcal{M}(g^r) := \left\{ (T, F) \in \mathcal{M}^{\mathrm{ord}}(q) : char_F = g^r \right\}.$$

Observe: if $A \in AV(g^r)$ then

$$A \sim (B_1 \times \ldots \times B_s)^r$$

with

$$g = h_{B_1 \times \dots \times B_s}$$

Main theorem

Consider the CM étale Q-algebra

$$\mathbf{K} = \mathbb{Q}[\mathbf{F}] = \mathbb{Q}[\mathbf{x}]_{g}$$

where
$$F = x \mod g$$

and the order in K given by

$$R = \mathbb{Z}[F, V],$$
 where $V = q/F = \overline{F}$

Define

 $\mathscr{B}(\mathbf{g}^r) := \{ \text{fin. gen. torsion-free } R \text{-modules } M \text{ s.t. } M \otimes_R K \simeq K^r \}$

Theorem (M.)

There are equivalences of categories

$$\mathsf{AV}(g^r) \stackrel{Deligne}{\longleftrightarrow} \mathscr{M}(g^r) \longleftrightarrow \mathscr{B}(g^r)$$

Marseglia Stefano

Recall that an R-module M is torsion-free if the canonical morphism

 $M \to M \otimes_R K$

is injective.

We can think of modules $M \in \mathscr{B}(g^r)$ as embedded in K^r .

The category $\mathscr{B}(g^r)$ becomes more explicit and computable under certain assumption on the order R.

Bass orders

Recall

- a fractional R-ideal I is a sub-R-module of K which is also a lattice
- a fractional *R*-ideal is invertible in *R* if I(R:I) = R.

Define

$$ICM(R) = \{ fractional R-ideals \}_{\cong R}$$
 ideal class monoid

and

 $Pic(R) = \{ fractional R-ideals invertible in R \}_{\simeq R}$ Picard group

An order R is called Bass if one of the following equivalent conditions holds:

- every over-order $R \subseteq S \subseteq \mathcal{O}_K$ is Gorenstein.
- every fractional R-ideal I is invertible in (I : I).

•
$$\operatorname{ICM}(R) = \bigsqcup_{R \subseteq S \subseteq \mathscr{O}_K} \operatorname{Pic}(S).$$

 $\frac{11}{26}$

$\mathscr{B}(g^r)$ in the Bass case

Theorem (Bass)

Assume that R is a Bass order. Then for every $M \in \mathscr{B}(g^r)$ there are fractional R-ideals I_1, \ldots, I_r such that

 $M \simeq_R I_1 \oplus \ldots \oplus I_r$. everything is a direct sum of fractional ideals

Moreover, given $M = \bigoplus_{k=1}^{r} I_k$ and $M' = \bigoplus_{k=1}^{r} J_k$ we have that

 $\frac{12}{26}$

$\mathscr{B}(g^r)$ in the Bass case

Corollary

Assume that R is Bass. Then for every $M \in \mathscr{B}(g^r)$ there are over orders $S_1 \subseteq ... \subseteq S_r$ of R and a fractional ideal I invertible in S_r such that

 $M\simeq S_1\oplus\ldots\oplus S_{r-1}\oplus I$

Simple description of morphisms in $\mathscr{B}(g^r)$. For example, for M as above:

$$\operatorname{End}_{R}(M) = \begin{pmatrix} S_{1} & S_{2} & \dots & S_{r-1} & I \\ (S_{1}:S_{2}) & S_{2} & \dots & S_{r-1} & I \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (S_{1}:S_{r-1}) & (S_{2}:S_{r-1}) & \dots & S_{r-1} & I \\ (S_{1}:I) & (S_{2}:I) & \dots & (S_{r-1}:I) & (I:I) \end{pmatrix}$$

and

$$\operatorname{Aut}_{R}(M) = \left\{ A \in \operatorname{End}_{R}(M) \cap \operatorname{GL}_{r}(K) : A^{-1} \in \operatorname{End}_{R}(M) \right\}.$$

Corollary

Assume $R = \mathbb{Z}[F, V]$ is Bass. Then

•
$$AV(g^r)/_{\simeq} \longleftrightarrow \begin{cases} (S_1 \subseteq S_2 \subseteq \ldots \subseteq S_r, [I]_{\simeq}) : I \text{ a frac. } R\text{-ideal} \\ with (I:I) = S_r \end{cases}$$

• if
$$A \longleftrightarrow \bigoplus_k I_k \text{ and } B \longleftrightarrow \bigoplus_k J_k$$

then $\mu \in \operatorname{Hom}(A, B) \longleftrightarrow \Lambda \in \operatorname{Mat}_{r \times r}(K) \text{ s.t. } \Lambda_{h,k} \in (J_h : I_k)$

Moreover, μ is an isogeny if and only if det $(\Lambda) \in K^{\times}$

Marseglia Stefano

Let
$$g = x^6 - 3x^5 + 6x^4 - 10x^3 + 18x^2 - 27x + 27$$
.
Note AV(g) is an isogeny class of simple ordinary abelian varieties over \mathbb{F}_3 .
Define $K = \mathbb{Q}[x]/(g) = \mathbb{Q}(F)$ and $R = \mathbb{Z}[F, V]$.
The only over-order of R is the maximal order \mathcal{O}_K of K and, since R is

Gorenstein R is Bass.

Observe

$$\operatorname{Pic}(R) \simeq \mathbb{Z}_{3\mathbb{Z}}$$
 and $\operatorname{Pic}(\mathcal{O}_{K}) = \{1\}.$

Let I be a representatives of a generator of Pic(R).

We now list the representatives of the isomorphism classes in $AV(g^3)$:

 $\begin{aligned} M_1 &= R \oplus R \oplus R \\ M_2 &= R \oplus R \oplus I \\ M_3 &= R \oplus R \oplus I^2 \\ M_5 &= R \oplus \mathcal{O}_K \oplus \mathcal{O}_K \\ \end{bmatrix} \\ M_6 &= \mathcal{O}_K \oplus \mathcal{O}_K \oplus \mathcal{O}_K \\ \end{aligned}$

Let $M \in \mathscr{B}(g^r)$ and let $\mathrm{Tr} : \mathcal{K}^r \to \mathbb{Q}$ be the map induced by $\mathrm{Tr}_{\mathcal{K}/\mathbb{Q}}$ Put

$$M^{\vee} := \overline{M^t} = \{\overline{x} \in K^r : \operatorname{Tr}(xM) \subseteq \mathbb{Z}\}.$$

In particular if $M = \bigoplus_k I_k$ then $M^{\vee} = \bigoplus_k \overline{I_k}^t$.

Proposition

If $\mu: A \to B$ in $AV(g^r)$ corresponds to $\Lambda: M \to N$ in $\mathscr{B}(g^r)$, then $\mu^{\vee}: B^{\vee} \to A^{\vee}$ in $AV(g^r)$ corresponds to $\Lambda^{\vee}: N^{\vee} \to M^{\vee}$ in $\mathscr{B}(g^r)$, where

$$\Lambda^{\vee} := \overline{\Lambda}^7$$

"Proof": Howe (1995) described dual modules in $\mathcal{M}^{\text{ord}}(q)$.

Polarizations

Fix

$$\Phi := \{\varphi : \mathcal{K} \to \mathbb{C} : v_p(\varphi(\mathcal{F})) > 0\}, \text{ tricky to compute}\}$$

where v_p is the *p*-adic valuation induced by $\varepsilon : W(\overline{\mathbb{F}}_p) \hookrightarrow \mathbb{C}$. Observe that Φ is a **CM-type** of *K* since the isogeny class is ordinary.

Theorem

Let $\mu : A \to A^{\vee}$ in AV(g^r) be an isogeny, corresponding to $\Lambda : M \to M^{\vee}$. Then μ is a polarization if and only if

•
$$\Lambda = -\overline{\Lambda}^T$$
, and

• for every a in K^r , the element $c = a^T \overline{\Lambda} \overline{a}$ is Φ -non-positive, that is $\operatorname{Im}(\varphi(c)) \leq 0$ for every φ in Φ .

We have deg $\mu = [M^{\vee} : \Lambda M]$.

"Proof": Howe (1995) put polarizations in Deligne's category $\mathcal{M}^{\text{ord}}(q)$. We translated this notion to $\mathscr{B}(g^r)$.

 $\frac{17}{26}$

Automorphisms

Let (M, Λ) and (M', Λ') correspond to polarized variety in AV (g^r) . A morphism of polarized abelian varieties is a map $\Psi: M \to M'$ such that

 $\Psi^{\vee}\Lambda'\Psi=\Lambda.$

Let Pol(M) be the set of polarizations of M.

Theorem

There is a degree-preserving action of Aut(M) on Pol(M) given by

$$\operatorname{Aut}(M) \times \operatorname{Pol}(M) \longmapsto \operatorname{Pol}(M)$$
$$(U, \Lambda) \longmapsto U^{\vee} \Lambda U$$

Unfortunately

$$\operatorname{Pol}(M)$$
 Aut(M) is hard to understand if $r \ge 2$

The case r = 1

٥

We don't need R Bass now!

$$AV(g)_{\simeq} \longleftrightarrow ICM(R)$$

- Concretely, if $A \leftrightarrow I$, then $A^{\vee} \leftrightarrow \overline{I}^t$, and
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that
 - $\lambda I \subseteq \overline{I}^t$ (isogeny);
 - λ is totally imaginary $(\overline{\lambda} = -\lambda)$;
 - λ is Φ -positive, where Φ is the CM-type of K. "coming from char p"

Also: deg
$$\mu = [\overline{l}^t : \lambda l]$$
.
• if $(A, \mu) \leftrightarrow (l, \lambda)$ and $S = (l : l)$ then

$$\begin{cases}
\text{non-isomorphic} \\
\text{polarizations of } A
\end{cases} \longleftrightarrow \frac{\{\text{totally positive } u \in S^{\times}\}}{\{v\overline{v} : v \in S^{\times}\}} \\
\text{and } \operatorname{Aut}(A, \mu) = \{\text{torsion units of } S\}
\end{cases}$$

16 October 2018 - IRMA

- Let $h(x) = x^8 5x^7 + 13x^6 25x^5 + 44x^4 75x^3 + 117x^2 135x + 81;$
- → isogeny class of an simple ordinary abelian varieties over F₃ of dimension 4;
- Let F be a root of h(x) and put $R := \mathbb{Z}[F, 3/F] \subset \mathbb{Q}(F)$;
- 8 over-orders of R: two of them are not Gorenstein;
- $\# ICM(R) = 18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class;
- 5 are not invertible in their multiplicator ring;
- 8 classes admit principal polarizations;
- 10 isomorphism classes of princ. polarized AV.

Concretely:

$$\begin{split} & H_1 = 2645633792595191\mathbb{Z} \oplus (F + 836920075614551)\mathbb{Z} \oplus (F^2 + 1474295643839839)\mathbb{Z} \oplus \\ & \oplus (F^3 + 1372829830503387)\mathbb{Z} \oplus (F^4 + 1072904687510)\mathbb{Z} \oplus \\ & \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 6704806986143610)\mathbb{Z} \oplus \\ & \oplus \frac{1}{9}(F^6 + F^5 + F^4 + 8F^3 + 2F^2 + 2991665243621169)\mathbb{Z} \oplus \\ & \oplus \frac{1}{27}(F^7 + F^6 + F^5 + 17F^4 + 20F^3 + 9F^2 + 68015312518722201)\mathbb{Z} \oplus \\ \end{split}$$

principal polarizations:

$$x_{1,1} = \frac{1}{27} (-121922F^7 + 588604F^6 - 1422437F^5 + 1464239F^4 + 1196576F^3 - 7570722F^2 + 15316479F - 12821193)$$

$$x_{1,2} = \frac{1}{27} (3015467F^7 - 17689816F^6 + 35965592F^5 - 64660346F^4 + 121230619F^3 - 191117052F^2 + 315021546F - 300025458)$$
End(I_1) = R
Aut(I_1 , $x_{1,1}$) = # Aut(I_1 , $x_{1,2}$) = 2

16 October 2018 - IRMAR

21 / 26

Marseglia Stefano

$$\begin{split} &I_7 = 2\mathbb{Z} \oplus (F+1)\mathbb{Z} \oplus (F^2+1)\mathbb{Z} \oplus (F^3+1)\mathbb{Z} \oplus (F^4+1)\mathbb{Z} \oplus \frac{1}{3}(F^5+F^4+F^3+2F^2+2F+3)\mathbb{Z} \oplus \\ &\oplus \frac{1}{36}(F^6+F^5+10F^4+26F^3+2F^2+27F+45)\mathbb{Z} \oplus \\ &\oplus \frac{1}{216}(F^7+4F^6+49F^5+200F^4+116F^3+105F^2+198F+351)\mathbb{Z} \end{split}$$

22 /

principal polarization:

$$\begin{aligned} x_{7,1} &= \frac{1}{54} (20F^7 - 43F^6 + 155F^5 - 308F^4 + 580F^3 - 1116F^2 + 2205F - 1809) \\ &\text{End}(I_7) = \mathbb{Z} \oplus F\mathbb{Z} \oplus F^2\mathbb{Z} \oplus F^3\mathbb{Z} \oplus F^4\mathbb{Z} \oplus \frac{1}{3} (F^5 + F^4 + F^3 + 2F^2 + 2F)\mathbb{Z} \oplus \\ &\oplus \frac{1}{18} (F^6 + F^5 + 10F^4 + 8F^3 + 2F^2 + 9F + 9)\mathbb{Z} \oplus \\ &\oplus \frac{1}{108} (F^7 + 4F^6 + 13F^5 + 56F^4 + 80F^3 + 33F^2 + 18F + 27)\mathbb{Z} \oplus \\ &\# \operatorname{Aut}(I_7, x_{7,1}) = 2 \end{aligned}$$

 I_1 is invertible in R, but I_7 is not invertible in End (I_7) . 16 October 2018 - IRMAR

Marseglia Stefano

We can also compute the period matrix of the canonical lifts of a principally polarized square-free ordinary abelian variety: Assume

$$(A,\mu) \longleftrightarrow (I,\lambda)$$

Write

$$I = \alpha_1 \mathbb{Z} \oplus \dots \alpha_{2g} \mathbb{Z}$$

Let $\Phi = {\varphi_1, ..., \varphi_g}$ be the CM-type. Let (A', μ') be the (complex) canonical lift of (A, μ) . We have an isomorphism of complex tori

$$A'(\mathbb{C}) \simeq \mathbb{C}^{g} / \Phi(I), \qquad \Phi(I) = \langle (\varphi_1(\alpha_i), \dots, \varphi_g(\alpha_i)) \qquad i = 1, \dots, 2g \rangle.$$

Period matrices

The Riemann form associated to λ is given by

$$b: I \times I \to \mathbb{Z} \quad (s,t) \mapsto \operatorname{Tr}(\overline{t\lambda}s).$$

Pick a symplectic \mathbb{Z} -basis of I with respect to the form b, that is,

$$I = \gamma_1 \mathbb{Z} \oplus \ldots \oplus \gamma_g \mathbb{Z} \oplus \beta_1 \mathbb{Z} \oplus \ldots \oplus \beta_g \mathbb{Z},$$

with

$$b(\gamma_i, \beta_i) = 1$$
 for all *i*, and
 $b(\gamma_h, \gamma_k) = b(\beta_h, \beta_k) = b(\gamma_h, \beta_k) = 0$ for all $h \neq k$

Consider the $g \times 2g$ matrix Ω whose *i*-th row is

$$(\varphi_i(\gamma_1),\ldots,\varphi_i(\gamma_g),\varphi_i(\beta_1),\ldots,\varphi_i(\beta_g)).$$

This is big period matrix of (A', λ') .

24 /

Period matrices - Example

Let $g = (x^4 - 4x^3 + 8x^2 - 12x + 9)(x^4 - 2x^3 + 2x^2 - 6x + 9)$. We compute the principally polarized abelian varieties and we find that 4 isomorphism classes admit a unique principal polarization. Here is one of them with the period matrix of the canonical lift.

$$I = \frac{1}{54} \left(432 - 549\alpha + 441\alpha^2 - 331\alpha^3 + 186\alpha^4 - 81\alpha^5 + 33\alpha^6 - 7\alpha^7 \right) \mathbb{Z} \oplus$$

$$\oplus \frac{1}{6} \left(63 - 78\alpha + 65\alpha^2 - 49\alpha^3 + 27\alpha^4 - 12\alpha^5 + 5\alpha^6 - 1\alpha^7 \right) \mathbb{Z} \oplus$$

$$\oplus \frac{1}{6} \left(81 - 99\alpha + 84\alpha^2 - 61\alpha^3 + 33\alpha^4 - 15\alpha^5 + 6\alpha^6 - 1\alpha^7 \right) \mathbb{Z} \oplus$$

$$\oplus \frac{1}{18} \left(-63 + 96\alpha - 86\alpha^2 + 68\alpha^3 - 39\alpha^4 + 18\alpha^5 - 8\alpha^6 + 2\alpha^7 \right) \mathbb{Z} \oplus (-1) \mathbb{Z} \oplus$$

$$\oplus (-\alpha) \mathbb{Z} \oplus (-\alpha^2) \mathbb{Z} \oplus \frac{1}{9} \left(81 - 96\alpha + 81\alpha^2 - 64\alpha^3 + 33\alpha^4 - 15\alpha^5 + 6\alpha^6 - \alpha^7 \right) \mathbb{Z}$$

$$\lambda = \frac{537}{80} - \frac{1343}{120}\alpha + \frac{1343}{144}\alpha^2 - \frac{419}{60}\alpha^3 + \frac{337}{80}\alpha^4 - \frac{15}{8}\alpha^5 + \frac{559}{720}\alpha^6 - \frac{1}{5}\alpha^7$$

$$\Omega = \begin{pmatrix} 2.8 - i & -2.8 + 0.59i & 0 & 0 & 1 & 1.7 - 0.29i & 0 & 0 \\ 0 & 0 & -1 & -0.38 - 0.15i & 0 & 0 & -1.6 - 0.62i & -0.15 - 0.15i \\ 0 & 0 & -1 & -2.6 + 6.9i & 0 & 0 & 0.62 - 1.6i & -6.9 + 6.9i \end{pmatrix}$$

Thank you!

26 / 26