Abelian varieties over finite fields isogenous to a power

Marseglia Stefano

MPI/Stockholms University
16 October 2018 - IRMAR

Introduction

Today's plan:

- Brief review of the material.
- $\mathrm{AV} A$ isogenous to B^{r}, for B ordinary square-free defined over \mathbb{F}_{q}.
- Isomorphism classes.
- Polarizations.
- Computations of polarizations and period matrices $(r=1)$.

Abelian varieties $\left(\mathbb{C}\right.$ vs $\left.\mathbb{F}_{q}\right)$

- Goal: compute isomorphism classes of abelian varieties over a finite field \mathbb{F}_{q}.
- in dimension $g>1$ it is not easy to produce equations.
- for $g>3$ it is not enough to consider Jacobians.
- over \mathbb{C} :

$$
\{\text { abelian varieties } / \mathbb{C}\} \longleftrightarrow\left\{\begin{array}{l}
\mathbb{C}^{g} / L \text { with } L \simeq \mathbb{Z}^{2 g} \\
+ \text { Riemann form }
\end{array}\right\} .
$$

- in positive characteristic we don't have such equivalence (on the whole category).

Isogeny classes

Recall

- for an abelian variety A / \mathbb{F}_{q} there are simple B_{i} and positive integers e_{i} s.t.

$$
A \sim_{\mathbb{F}_{q}} B_{1}^{e_{1}} \times \ldots \times B_{s}^{e_{s}} \quad \text { Poincaré decomposition }
$$

- If h_{A} is the characteristic polynomial of Frobenius π_{A} (acting on $T_{I} A$, for some $l \neq p$) then
- $h_{A} \in \mathbb{Z}[x]$ and roots of size $\sqrt{q} \quad q$-Weil polynomial
- $h_{A}=h_{B_{1}}^{e_{1}} \cdots h_{B_{s}}^{e_{s}}$
- $\operatorname{deg} h_{A}=2 \operatorname{dim} A$.

Theorem (Honda-Tate)
There is a bijection betweeen the set of simple abelian varieties over \mathbb{F}_{q} up to isogeny and the set of q-Weil numbers up to conjugacy.

Ordinary AV

An abelian variety A / \mathbb{F}_{q} of dimension g is called ordinary if one of the following equivalent conditions holds:
(a) $A[p]\left(\overline{\mathbb{F}}_{p}\right) \simeq(\mathbb{Z} / p \mathbb{Z})^{g}$ (i.e. the max possible)
(b) exactly half of the roots of h_{A} over $\overline{\mathbb{Q}}_{p}$ are p-adic units
(c) the mid-coefficient of h_{A} is coprime with p

Proposition
For B ordinary over \mathbb{F}_{q} :

$$
h_{B} \text { is irreducible } \Longleftrightarrow B \text { is simple }
$$

Deligne's equivalence

Theorem (Deligne '69)
Let $q=p^{d}$, with p a prime. There is an equivalence of categories:

$$
\begin{gathered}
A V^{\text {ord }}(q):=\left\{\text { Ordinary abelian varieties over } \mathbb{F}_{q}\right\} \\
\downarrow
\end{gathered} \mathscr{M}^{\circ r d}(q):=\left\{\begin{array}{l}
\text { pairs }(T, F) \text {, where } T \simeq_{\mathbb{Z}} \mathbb{Z}^{2 g} \text { and } T \stackrel{F}{\rightarrow} T \text { s.t. } \\
-F \otimes \mathbb{Q} \text { is semisimple } \\
- \text { the roots of char }{ }_{F \otimes \mathbb{Q}}(x) \text { have abs. value } \sqrt{q} \\
- \text { half of them are } p \text {-adic units } \\
-\exists V: T \rightarrow T \text { such that } F V=V F=q
\end{array}\right\}
$$

Deligne's equivalence - the functor

- fix an embedding of $\varepsilon: W=W\left(\overline{\mathbb{F}}_{p}\right) \hookrightarrow \mathbb{C}$
- take $A \in \mathrm{AV}^{\text {ord }}(q)$
- let A^{\prime} be the canonical lift of A to W
- put $A_{\mathbb{C}}:=A^{\prime} \otimes_{\mathcal{E}} \mathbb{C}$
- finally, let $T(A):=H_{1}\left(A_{\mathbb{C}}, \mathbb{Z}\right)$
- the construction is functorial: Frobenius $\pi(A) \rightsquigarrow F(A)$.

Observe if $\operatorname{dim}(A)=g$ then $\operatorname{Rank}(T(A))=2 g$;

AV isogenous to a power

Today's setup:
let g be a q-Weil polynomial which is ordinary and square-free
Put

$$
\operatorname{AV}\left(g^{r}\right):=\left\{A \in \operatorname{AV}^{\text {ord }}(q): h_{A}=g^{r}\right\}
$$

and

$$
\mathscr{M}\left(g^{r}\right):=\left\{(T, F) \in \mathscr{M}^{\text {ord }}(q): \text { char }_{F}=g^{r}\right\} .
$$

Observe: if $A \in \operatorname{AV}\left(g^{r}\right)$ then

$$
A \sim\left(B_{1} \times \ldots \times B_{s}\right)^{r}
$$

with

$$
g=h_{B_{1} \times \ldots \times B_{s}}
$$

Main theorem

Consider the CM étale \mathbb{Q}-algebra

$$
K=\mathbb{Q}[F]=\mathbb{Q}[x] / g \quad \text { where } F=x \bmod g
$$

and the order in K given by

$$
R=\mathbb{Z}[F, V], \quad \text { where } V=q / F=\bar{F}
$$

Define
$\mathscr{B}\left(g^{r}\right):=\left\{\right.$ fin. gen. torsion-free R-modules M s.t. $\left.M \otimes_{R} K \simeq K^{r}\right\}$

Theorem (M.)
There are equivalences of categories

$$
\mathrm{AV}\left(g^{r}\right) \stackrel{\text { Deligne }}{\longleftrightarrow} \mathscr{M}\left(g^{r}\right) \longleftrightarrow \mathscr{B}\left(g^{r}\right)
$$

The category $\mathscr{B}\left(g^{r}\right)$

Recall that an R-module M is torsion-free if the canonical morphism

$$
M \rightarrow M \otimes_{R} K
$$

is injective.
We can think of modules $M \in \mathscr{B}\left(g^{r}\right)$ as embedded in K^{r}. The category $\mathscr{B}\left(g^{r}\right)$ becomes more explicit and computable under certain assumption on the order R.

Bass orders

Recall

- a fractional R-ideal I is a sub- R-module of K which is also a lattice
- a fractional R-ideal is invertible in R if $I(R: I)=R$.

Define

$$
\operatorname{ICM}(R)=\{\text { fractional } R \text {-ideals }\} / \simeq_{R} \quad \text { ideal class monoid }
$$

and

$$
\operatorname{Pic}(R)=\{\text { fractional } R \text {-ideals invertible in } R\} / \simeq_{R} \quad \text { Picard group }
$$

An order R is called Bass if one of the following equivalent conditions holds:

- every over-order $R \subseteq S \subseteq \mathscr{O}_{K}$ is Gorenstein.
- every fractional R-ideal I is invertible in $(I: I)$.
- $\operatorname{ICM}(R)=\bigsqcup_{R \subseteq S \subseteq O_{K}} \operatorname{Pic}(S)$.

$\mathscr{B}\left(g^{r}\right)$ in the Bass case

Theorem (Bass)
Assume that R is a Bass order. Then for every $M \in \mathscr{B}\left(g^{r}\right)$ there are fractional R-ideals I_{1}, \ldots, I_{r} such that

$$
M \simeq_{R} I_{1} \oplus \ldots \oplus I_{r} . \quad \begin{aligned}
& \text { everything is a direct sum } \\
& \text { of fractional ideals }
\end{aligned}
$$

Moreover, given $M=\oplus_{k=1}^{r} I_{k}$ and $M^{\prime}=\oplus_{k=1}^{r} J_{k}$ we have that

$$
M \simeq_{R} M^{\prime} \Longleftrightarrow \begin{cases}\left(I_{k}: I_{k}\right)=\left(J_{k}: J_{k}\right) \text { for every } k, \text { and } & \text { generalization of } \\ \prod_{k=1}^{r} I_{k} \simeq_{R} \prod_{k=1}^{r} J_{k} & \text { Steinitz theory }\end{cases}
$$

$\mathscr{B}\left(g^{r}\right)$ in the Bass case

Corollary

Assume that R is Bass. Then for every $M \in \mathscr{B}\left(g^{r}\right)$ there are over orders $S_{1} \subseteq \ldots \subseteq S_{r}$ of R and a fractional ideal I invertible in S_{r} such that

$$
M \simeq S_{1} \oplus \ldots \oplus S_{r-1} \oplus I
$$

Simple description of morphisms in $\mathscr{B}\left(g^{r}\right)$. For example, for M as above:

$$
\operatorname{End}_{R}(M)=\left(\begin{array}{ccccc}
S_{1} & S_{2} & \ldots & S_{r-1} & I \\
\left(S_{1}: S_{2}\right) & S_{2} & \ldots & S_{r-1} & I \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\left(S_{1}: S_{r-1}\right) & \left(S_{2}: S_{r-1}\right) & \ldots & S_{r-1} & I \\
\left(S_{1}: I\right) & \left(S_{2}: I\right) & \ldots & \left(S_{r-1}: I\right) & (I: I)
\end{array}\right)
$$

and

$$
\operatorname{Aut}_{R}(M)=\left\{A \in \operatorname{End}_{R}(M) \cap \mathrm{GL}_{r}(K): A^{-1} \in \operatorname{End}_{R}(M)\right\}
$$

Consequences for $\mathrm{AV}\left(g^{r}\right)$

Corollary

Assume $R=\mathbb{Z}[F, V]$ is Bass. Then

$$
\operatorname{AV}\left(g^{r}\right) / \simeq \longleftrightarrow\left\{\left(S_{1} \subseteq S_{2} \subseteq \ldots \subseteq S_{r},[I]_{\simeq}\right): \begin{array}{l}
R \subseteq S_{1} \\
I \text { a frac. R-ideal } \\
\text { with }(I: I)=S_{r}
\end{array}\right\}
$$

- for every $A \in \operatorname{AV}\left(g^{r}\right)$, say $A \sim B^{r}$ with $h_{B}=g$, there are

$$
C_{1}, \ldots, C_{r} \sim B \text { such that } A \simeq C_{1} \times \ldots \times C_{r}
$$

everything is a product

- if

$$
A \longleftrightarrow \bigoplus_{k} I_{k} \text { and } B \longleftrightarrow \bigoplus_{k} J_{k}
$$

then

$$
\mu \in \operatorname{Hom}(A, B) \longleftrightarrow \Lambda \in \operatorname{Mat}_{r \times r}(K) \text { s.t. } \Lambda_{h, k} \in\left(J_{h}: I_{k}\right)
$$

Moreover, μ is an isogeny if and only if $\operatorname{det}(\Lambda) \in K^{\times}$

Example

Let $g=x^{6}-3 x^{5}+6 x^{4}-10 x^{3}+18 x^{2}-27 x+27$.
Note $\mathrm{AV}(g)$ is an isogeny class of simple ordinary abelian varieties over \mathbb{F}_{3}.
Define $K=\mathbb{Q}[x] /(g)=\mathbb{Q}(F)$ and $R=\mathbb{Z}[F, V]$.
The only over-order of R is the maximal order \mathscr{O}_{K} of K and, since R is Gorenstein R is Bass.
Observe

$$
\operatorname{Pic}(R) \simeq \mathbb{Z} / 3 \mathbb{Z} \text { and } \operatorname{Pic}\left(\mathscr{O}_{K}\right)=\{1\} .
$$

Let I be a representatives of a generator of $\operatorname{Pic}(R)$.
We now list the representatives of the isomorphism classes in $\operatorname{AV}\left(g^{3}\right)$:

$$
\begin{array}{lll}
M_{1}=R \oplus R \oplus R & M_{2}=R \oplus R \oplus I & M_{3}=R \oplus R \oplus I^{2} \\
M_{4}=R \oplus R \oplus \mathscr{O}_{K} & M_{5}=R \oplus \mathscr{O}_{K} \oplus \mathscr{O}_{K} & M_{6}=\mathscr{O}_{K} \oplus \mathscr{O}_{K} \oplus \mathscr{O}_{K}
\end{array} \quad \begin{array}{lll}
R & R & I \\
\operatorname{End}\left(M_{1}\right)=\operatorname{Mat}_{3}(R) \text { and } \operatorname{End}\left(M_{2}\right)=\left(\begin{array}{ccc}
R & R & I \\
R: I) & (R: I) & R
\end{array}\right)_{16} \text { October 2018-IRMAR }
\end{array}
$$

Dual modules

Let $M \in \mathscr{B}\left(g^{r}\right)$ and let $\operatorname{Tr}: K^{r} \rightarrow \mathbb{Q}$ be the map induced by $\operatorname{Tr}_{K / \mathbb{Q}}$ Put

$$
M^{\vee}:=\overline{M^{t}}=\left\{\bar{x} \in K^{r}: \operatorname{Tr}(x M) \subseteq \mathbb{Z}\right\} .
$$

In particular if $M=\oplus_{k} I_{k}$ then $M^{\vee}=\oplus_{k} \bar{I}_{k}{ }^{t}$.
Proposition
If $\mu: A \rightarrow B$ in $\mathrm{AV}\left(g^{r}\right)$ corresponds to $\Lambda: M \rightarrow N$ in $\mathscr{B}\left(g^{r}\right)$, then $\mu^{\vee}: B^{\vee} \rightarrow A^{\vee}$ in $\mathrm{AV}\left(g^{r}\right)$ corresponds to $\Lambda^{\vee}: N^{\vee} \rightarrow M^{\vee}$ in $\mathscr{B}\left(g^{r}\right)$, where

$$
\Lambda^{\vee}:=\bar{\Lambda}^{T}
$$

"Proof": Howe (1995) described dual modules in $\mathscr{M}^{\text {ord }}(q)$.

Polarizations

Fix

$$
\Phi:=\left\{\varphi: K \rightarrow \mathbb{C}: v_{p}(\varphi(F))>0\right\}, \text { tricky to compute! }
$$

where v_{p} is the p-adic valuation induced by $\varepsilon: W\left(\overline{\mathbb{F}}_{p}\right) \hookrightarrow \mathbb{C}$.
Observe that Φ is a CM-type of K since the isogeny class is ordinary.
Theorem
Let $\mu: A \rightarrow A^{\vee}$ in $\mathrm{AV}\left(g^{r}\right)$ be an isogeny, corresponding to $\Lambda: M \rightarrow M^{\vee}$. Then μ is a polarization if and only if

- $\Lambda=-\bar{\Lambda}^{T}$, and
- for every a in K^{r}, the element $c=a^{T} \bar{\Lambda} \bar{a}$ is Φ-non-positive, that is $\operatorname{Im}(\varphi(c)) \leq 0$ for every φ in Φ.
We have $\operatorname{deg} \mu=\left[M^{\vee}: \Lambda M\right]$.
"Proof": Howe (1995) put polarizations in Deligne's category $\mathscr{M}^{\text {ord }}(q)$. We translated this notion to $\mathscr{B}\left(g^{r}\right)$.

Automorphisms

Let (M, Λ) and $\left(M^{\prime}, \Lambda^{\prime}\right)$ correspond to polarized variety in $\mathrm{AV}\left(g^{r}\right)$.
A morphism of polarized abelian varieties is a map $\Psi: M \rightarrow M^{\prime}$ such that

$$
\Psi^{\vee} \Lambda^{\prime} \Psi=\Lambda
$$

Let $\operatorname{Pol}(M)$ be the set of polarizations of M.
Theorem
There is a degree-preserving action of $\operatorname{Aut}(M)$ on $\operatorname{Pol}(M)$ given by

$$
\begin{gathered}
\operatorname{Aut}(M) \times \operatorname{Pol}(M) \\
(U, \Lambda) \longmapsto \operatorname{Pol}(M) \\
U^{\vee} \Lambda U
\end{gathered}
$$

Unfortunately

$$
\operatorname{Pol}(M) / \operatorname{Aut}(M) \text { is hard to understand if } r \geq 2
$$

The case $r=1$

We don't need R Bass now!

$$
\mathrm{AV}(g) / \simeq \longleftrightarrow \mathrm{ICM}(R)
$$

- Concretely, if $A \leftrightarrow I$, then $A^{\vee} \leftrightarrow \bar{I}^{t}$, and
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$such that
- $\lambda I \subseteq \bar{l}^{t}$ (isogeny);
- λ is totally imaginary $(\bar{\lambda}=-\lambda)$;
- λ is Φ-positive, where Φ is the CM-type of K. "coming from char $p^{\prime \prime}$
Also: $\operatorname{deg} \mu=\left[\bar{I}^{t}: \lambda /\right]$.
- if $(A, \mu) \leftrightarrow(I, \lambda)$ and $S=(I: I)$ then

$$
\left\{\begin{array}{l}
\text { non-isomorphic } \\
\text { polarizations of } A
\end{array}\right\} \longleftrightarrow \frac{\text { totally positive } \left.u \in S^{\times}\right\}}{\left\{v \bar{v}: v \in S^{\times}\right\}}
$$

and $\operatorname{Aut}(A, \mu)=\{$ torsion units of $S\}$

Example

- Let $h(x)=x^{8}-5 x^{7}+13 x^{6}-25 x^{5}+44 x^{4}-75 x^{3}+117 x^{2}-135 x+81$;
- \rightsquigarrow isogeny class of an simple ordinary abelian varieties over \mathbb{F}_{3} of dimension 4;
- Let F be a root of $h(x)$ and put $R:=\mathbb{Z}[F, 3 / F] \subset \mathbb{Q}(F)$;
- 8 over-orders of R : two of them are not Gorenstein;
- \#ICM $(R)=18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class;
- 5 are not invertible in their multiplicator ring;
- 8 classes admit principal polarizations;
- 10 isomorphism classes of princ. polarized AV.

Example

Concretely:

$$
\begin{aligned}
I_{1}= & 2645633792595191 \mathbb{Z} \oplus(F+836920075614551) \mathbb{Z} \oplus\left(F^{2}+1474295643839839\right) \mathbb{Z} \oplus \\
& \oplus\left(F^{3}+1372829830503387\right) \mathbb{Z} \oplus\left(F^{4}+1072904687510\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{3}\left(F^{5}+F^{4}+F^{3}+2 F^{2}+2 F+6704806986143610\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{9}\left(F^{6}+F^{5}+F^{4}+8 F^{3}+2 F^{2}+2991665243621169\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{27}\left(F^{7}+F^{6}+F^{5}+17 F^{4}+20 F^{3}+9 F^{2}+68015312518722201\right) \mathbb{Z}
\end{aligned}
$$

principal polarizations:

$$
\begin{aligned}
x_{1,1}=\frac{1}{27}(& -121922 F^{7}+588604 F^{6}-1422437 F^{5}+ \\
& \left.+1464239 F^{4}+1196576 F^{3}-7570722 F^{2}+15316479 F-12821193\right) \\
x_{1,2}=\frac{1}{27} & \left(3015467 F^{7}-17689816 F^{6}+35965592 F^{5}-\right. \\
& \left.-64660346 F^{4}+121230619 F^{3}-191117052 F^{2}+315021546 F-300025458\right)
\end{aligned}
$$

$\operatorname{End}\left(I_{1}\right)=R$
$\# \operatorname{Aut}\left(I_{1}, x_{1,1}\right)=\# \operatorname{Aut}\left(I_{1}, x_{1,2}\right)=2$

Example

$$
\begin{aligned}
I_{7}= & 2 \mathbb{Z} \oplus(F+1) \mathbb{Z} \oplus\left(F^{2}+1\right) \mathbb{Z} \oplus\left(F^{3}+1\right) \mathbb{Z} \oplus\left(F^{4}+1\right) \mathbb{Z} \oplus \frac{1}{3}\left(F^{5}+F^{4}+F^{3}+2 F^{2}+2 F+3\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{36}\left(F^{6}+F^{5}+10 F^{4}+26 F^{3}+2 F^{2}+27 F+45\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{216}\left(F^{7}+4 F^{6}+49 F^{5}+200 F^{4}+116 F^{3}+105 F^{2}+198 F+351\right) \mathbb{Z}
\end{aligned}
$$

principal polarization:

$$
\begin{aligned}
& \begin{array}{l}
x_{7,1}=\frac{1}{54}\left(20 F^{7}-43 F^{6}+155 F^{5}-308 F^{4}+580 F^{3}-1116 F^{2}+2205 F-1809\right) \\
\begin{aligned}
\operatorname{End}\left(I_{7}\right) & =\mathbb{Z} \oplus F \mathbb{Z} \oplus F^{2} \mathbb{Z} \oplus F^{3} \mathbb{Z} \oplus F^{4} \mathbb{Z} \oplus \frac{1}{3}\left(F^{5}+F^{4}+F^{3}+2 F^{2}+2 F\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{18}\left(F^{6}+F^{5}+10 F^{4}+8 F^{3}+2 F^{2}+9 F+9\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{108}\left(F^{7}+4 F^{6}+13 F^{5}+56 F^{4}+80 F^{3}+33 F^{2}+18 F+27\right) \mathbb{Z}
\end{aligned} \\
\text { \#Aut }\left(I_{7}, x_{7,1}\right)=2
\end{array}
\end{aligned}
$$

I_{1} is invertible in R, but I_{7} is not invertible in $\operatorname{End}\left(I_{7}\right)_{1}$

Period matrices

We can also compute the period matrix of the canonical lifts of a principally polarized square-free ordinary abelian variety:
Assume

$$
(A, \mu) \longleftrightarrow(I, \lambda)
$$

Write

$$
I=\alpha_{1} \mathbb{Z} \oplus \ldots \alpha_{2 g} \mathbb{Z}
$$

Let $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{g}\right\}$ be the CM-type.
Let $\left(A^{\prime}, \mu^{\prime}\right)$ be the (complex) canonical lift of (A, μ).
We have an isomorphism of complex tori

$$
A^{\prime}(\mathbb{C}) \simeq \mathbb{C}^{g} / \Phi(I), \quad \Phi(I)=\left\langle\left(\varphi_{1}\left(\alpha_{i}\right), \ldots, \varphi_{g}\left(\alpha_{i}\right)\right) \quad i=1, \ldots, 2 g\right\rangle
$$

Period matrices

The Riemann form associated to λ is given by

$$
b: I \times I \rightarrow \mathbb{Z} \quad(s, t) \mapsto \operatorname{Tr}(\overline{t \lambda} s) .
$$

Pick a symplectic \mathbb{Z}-basis of I with respect to the form b, that is,

$$
I=\gamma_{1} \mathbb{Z} \oplus \ldots \oplus \gamma_{g} \mathbb{Z} \oplus \beta_{1} \mathbb{Z} \oplus \ldots \oplus \beta_{g} \mathbb{Z}
$$

with

$$
\begin{gathered}
b\left(\gamma_{i}, \beta_{i}\right)=1 \text { for all } i, \text { and } \\
b\left(\gamma_{h}, \gamma_{k}\right)=b\left(\beta_{h}, \beta_{k}\right)=b\left(\gamma_{h}, \beta_{k}\right)=0 \text { for all } h \neq k .
\end{gathered}
$$

Consider the $g \times 2 g$ matrix Ω whose i-th row is

$$
\left(\varphi_{i}\left(\gamma_{1}\right), \ldots, \varphi_{i}\left(\gamma_{g}\right), \varphi_{i}\left(\beta_{1}\right), \ldots, \varphi_{i}\left(\beta_{g}\right)\right)
$$

This is big period matrix of $\left(A^{\prime}, \lambda^{\prime}\right)$.

Period matrices - Example

Let $g=\left(x^{4}-4 x^{3}+8 x^{2}-12 x+9\right)\left(x^{4}-2 x^{3}+2 x^{2}-6 x+9\right)$. We compute the principally polarized abelian varieties and we find that 4 isomorphism classes admit a unique principal polarization. Here is one of them with the period matrix of the canonical lift.

$$
\begin{aligned}
I & =\frac{1}{54}\left(432-549 \alpha+441 \alpha^{2}-331 \alpha^{3}+186 \alpha^{4}-81 \alpha^{5}+33 \alpha^{6}-7 \alpha^{7}\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{6}\left(63-78 \alpha+65 \alpha^{2}-49 \alpha^{3}+27 \alpha^{4}-12 \alpha^{5}+5 \alpha^{6}-1 \alpha^{7}\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{6}\left(81-99 \alpha+84 \alpha^{2}-61 \alpha^{3}+33 \alpha^{4}-15 \alpha^{5}+6 \alpha^{6}-1 \alpha^{7}\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{18}\left(-63+96 \alpha-86 \alpha^{2}+68 \alpha^{3}-39 \alpha^{4}+18 \alpha^{5}-8 \alpha^{6}+2 \alpha^{7}\right) \mathbb{Z} \oplus(-1) \mathbb{Z} \oplus \\
& \oplus(-\alpha) \mathbb{Z} \oplus\left(-\alpha^{2}\right) \mathbb{Z} \oplus \frac{1}{9}\left(81-96 \alpha+81 \alpha^{2}-64 \alpha^{3}+33 \alpha^{4}-15 \alpha^{5}+6 \alpha^{6}-\alpha^{7}\right) \mathbb{Z} \\
\lambda & =\frac{537}{80}-\frac{1343}{120} \alpha+\frac{1343}{144} \alpha^{2}-\frac{419}{60} \alpha^{3}+\frac{337}{80} \alpha^{4}-\frac{15}{8} \alpha^{5}+\frac{559}{720} \alpha^{6}-\frac{1}{5} \alpha^{7}
\end{aligned}
$$

$$
\Omega=\left(\begin{array}{cccccccc}
2.8-i & -2.8+0.59 i & 0 & 0 & 1 & 1.7-0.29 i & 0 & 0 \\
-2.8+i & 2.8-3.4 i & 0 & 0 & 1 & 0.29+1.7 i & 0 & 0 \\
0 & 0 & -1 & -0.38-0.15 i & 0 & 0 & -1.6-0.62 i & -0.15-0.15 i \\
0 & 0 & -1 & -2.6+6.9 i & 0 & 0 & 0.62-1.6 i & -6.9+6.9 i
\end{array}\right)
$$

Thank you!

