\mathbb{Z}-conjugacy classes of matrices and fractional ideals and how to compute them

Stefano Marseglia

Utrecht University

ANTS Summer School - Europe - 27/06/2020

Introduction

Today's plan:

- Matrix conjugation
- Ideal Classes
- Latimer-MacDuffee Theorem
- Algorithms
- Generalizations

Motivation : the conjugacy problem

- Let \mathscr{R} be a commutative ring (with 1).
- Let A and B be matrices in $\operatorname{Mat}_{n \times n}(\mathscr{R})$.
- We say that A and B are conjugate (over \mathscr{R}) if

$$
\exists U \in \mathrm{GL}_{n}(\mathscr{R}) \text { such that } A=U B U^{-1} .
$$

- Question: by "looking" at A and B can we determine if they are conjugate?
- Question: are there invariants of A that determine its conjugacy class?

Invariants

Recall that:

- the characteristic polynomial of A is

$$
\operatorname{char}_{A}(x)=\operatorname{det}\left(x I_{n}-A\right) \in \mathscr{R}[x] .
$$

- $\operatorname{char}_{A}(x)$ of A is an invariant of the conjugacy class of $A \ldots$...but in general not a complete invariant:
- The following matrices are not conjugate (over any ring \mathscr{R})

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Same $\operatorname{char}_{A}(x)=\operatorname{char}_{B}(x)=(x-1)^{2}$ but different minimal polynomials: $m_{A}(x)=(x-1)^{2}$ while $m_{B}(x)=(x-1)$.

Over a field

- Over a field m_{A} and char ${ }_{A}$ tells us almost everything we need to know about the conjugacy class of A.
- More precisely:

Theorem (Rational Normal Form)
If \mathscr{R} is a field, then there are polynomials

$$
m_{A}(x)=g_{1}(x)\left|g_{2}(x)\right| \ldots \mid g_{r}(x)=\operatorname{char}_{A}(x)
$$

that completely determine the conjugacy class of A. Such polynomials can be computed using the Smith normal form of A.

- In particular: if $\operatorname{char}_{A}(x)$ is irreducible the problem is solved (over a field)!

Our setting:

From now on we will consider the case $\mathscr{R}=\mathbb{Z}$.
Let $h(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial.

- Given $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ with $h(x)=\operatorname{char}_{A}(x)=\operatorname{char}_{B}(x)$
- Can we determine if A and B are conjugate?
- Can we list representatives of the conjugacy classes of matrices A with $\operatorname{char}_{A}(x)=h(x)$? Finite set?
- Answers: Yes and Yes!
...but first some Notation and Background material.

Orders

- $h(x) \in \mathbb{Z}[x]$ monic and irreducible
- $K=\mathbb{Q}[x] /(h)$ number field
- $\alpha=x \bmod h$ primitive element of K
- an order R in K is a subring such that $R \simeq_{\mathbb{Z}} \mathbb{Z}^{\operatorname{deg}(h)}$
- Eg. $\mathbb{Z}[\alpha]=\mathbb{Z}[x] /(h)$
- Eg. \mathscr{O}_{K} the maximal order (a.k.a. ring of integers of K)
- an over-order of R is a ring S such that $R \subseteq S \subseteq \mathscr{O}_{K}$.

Fractional ideals

- a fractional R-ideal I is a sub- R-module of K such that $I \simeq_{\mathbb{Z}} \mathbb{Z}^{\operatorname{deg}(h)}$
- Eg. any non-zero ideal of R
- Eg. $\frac{1}{4} R$
- Eg. any over-order of R is a frac. R-ideals
- if I, J are frac. R-ideals then $I J, I+J, I \cap J$ and

$$
(I: J)=\{x \in K: x J \subseteq I\}
$$

are also frac. R-ideals

ICM and Latimer-MacDufee theorem (1933)

- isomorphism: we say $I \simeq_{R} J$ if there exists $z \in K$ s.t. $z I=J$
- we denote by [I] the isomorphism class of I
- define

$$
\operatorname{ICM}(R)=\frac{\{\text { frac. } R \text {-ideals }\}}{\simeq_{R}} \quad \text { ideal class monoid }
$$

- Note: the monoid structure is induced by ideal multiplication.

Theorem (Latimer-MacDufee theorem (1933))
Let $h(x) \in \mathbb{Z}[x]$ monic and irreducible. There exists a bijection

$$
\operatorname{ICM}(\mathbb{Z}[\alpha]) \longleftrightarrow \frac{\left\{A \in \operatorname{Mat}(\mathbb{Z}): \operatorname{char}_{A}(x)=h(x)\right\}}{\sim_{\mathbb{Z}}}
$$

Sketch of the proof:

- $I=x_{1} \mathbb{Z} \oplus \ldots \oplus x_{N} \mathbb{Z} \mapsto m_{\alpha, I, X}$ matrix representing multiplication-by- α w.r.t. the \mathbb{Z}-basis $X=\left\{x_{1}, \ldots, x_{N}\right\}$
- Note: $\operatorname{char}_{m_{\alpha, l, X}}(x)=h(x)$
- changing the \mathbb{Z}-basis X, replaces $m_{\alpha, I, X}$ with a \mathbb{Z}-conjugate matrix
- replacing I by $z l\left(z \in K^{\times}\right)$and X by $z X$ doesn't change the matrix:

$$
m_{\alpha, l, X}=m_{\alpha, z l, z X}
$$

- In the other direction: consider A with $\operatorname{char}_{A}(x)=h(x)$. Put $N=\operatorname{deg}(h)$.
- induce a $\mathbb{Z}[\alpha]$-module structure on \mathbb{Z}^{N} by $\alpha . v:=A . v$
- given any $\varphi_{0}: K \simeq_{\mathbb{Q}} \mathbb{Q}^{N}$, put $I=\varphi_{0}^{-1}\left(\mathbb{Z}^{N}\right)$ and note that $A=m_{\alpha, I, X}$ where X is the pre-image via φ_{0} of the standard basis of \mathbb{Z}^{N}.
- These two construction induce the bijection in the statement.

Example

- Take $h=x^{3}+10 x^{2}-8$
- Put $\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(h)$
- Consider the order

$$
\mathbb{Z}[\alpha]=\mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \alpha^{2} \mathbb{Z}
$$

- $\mathbb{Z}[\alpha]$ has 2 proper over-orders: $\mathbb{Z}[\alpha] \subsetneq S \subsetneq \mathscr{O}$

$$
S=\mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \frac{\alpha^{2}}{2} \mathbb{Z}, \quad \mathscr{O}=\mathbb{Z} \oplus \frac{\alpha}{2} \mathbb{Z} \oplus \frac{\alpha^{2}}{4} \mathbb{Z}
$$

- Using the algorithm that I will present, we get:

$$
\operatorname{ICM}(\mathbb{Z}[\alpha])=\left\{[\mathbb{Z}[\alpha]],[S],[\mathscr{O}],\left[S^{t}\right]\right\}
$$

where

$$
S^{t}=\mathbb{Z} \oplus\left(\frac{2+\alpha}{4}\right) \mathbb{Z} \oplus\left(\frac{188-312 \alpha+\alpha^{2}}{3784}\right) \mathbb{Z}
$$

Example (cont)

Matrices:

$$
\left.\begin{array}{rl}
{[\mathbb{Z}[\alpha]]} & \longleftrightarrow\left(\begin{array}{llc}
0 & 0 & 8 \\
1 & 0 & 0 \\
0 & 1 & -10
\end{array}\right) \\
{\left[S^{t}\right]} & \longleftrightarrow\left(\begin{array}{llc}
0 & 0 & 4 \\
2 & 0 & 0 \\
0 & 1 & -10
\end{array}\right) \\
{[S]} & \longleftrightarrow\left(\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 2
\end{array}-10\right.
\end{array}\right) .
$$

Questions one the first part?

In the rest of the talk, I will describe:
how to compute $\operatorname{ICM}(R)$ (for any order R in K)
how to test $I \simeq_{R} J$

invertible ideals: Pic

- As before: let R be an order in a number field K.
- A frac. R-ideal $/$ is called invertible if

$$
I(R: I)=R
$$

- Define

$$
\operatorname{Pic}(R):=\frac{\{\text { invertible frac. } R \text {-ideals }\}}{\simeq_{R}}
$$

- It can be computed efficiently if we know the class group $\operatorname{Pic}\left(\mathscr{O}_{K}\right)=\mathrm{Cl}(K)$ and the unit group \mathscr{O}_{K}^{\times}using:

$$
1 \rightarrow R^{\times} \rightarrow \mathscr{O}_{K}^{\times} \rightarrow \frac{(\mathscr{O} / \mathfrak{f})^{\times}}{(R / \mathfrak{f})^{\times}} \rightarrow \operatorname{Pic}(R) \rightarrow \operatorname{Pic}\left(\mathscr{O}_{K}\right) \rightarrow 1
$$

where $\mathfrak{f}=\left(R: \mathscr{O}_{K}\right)$ is the conductor of R. see Klüners/Pauli '05.

ICM and Pic

Lemma

Proof: Inclusion is clear. Every frac. \mathscr{O}_{K}-ideal is invertible (in \mathscr{O}_{K}).

- For a frac. R-ideal I the multiplicator ring of I is the over-order of R given by $(I: I)$ (the biggest over-order of R for which I is a module).

Lemma

$$
\operatorname{ICM}(R) \supseteq \underset{\substack{R \subseteq S \subseteq \mathscr{O}_{K} \\ \text { over-orders }}}{\bigsqcup^{\prime}} \operatorname{Pic}(S)
$$

Proof: Let I be a frac. R-ideal.
Let S be an order $R \subseteq S \subseteq(I: I)$. Then I is a frac. S-ideal.
If I is invertible in S then $S=I(S: I)=I(I: I)(S: I)=S(I: I)=(I: I)$.

ICM in general

- "Usually" we have an equality: $\operatorname{ICM}(R)=\sqcup \mathrm{Pic}(S)$ (iff R is Bass)
- In this case: compute the over-orders of R and their Pic's. (for the over-orders see Hofmann-Sircana 2019)
- BUT sometimes there are MORE isomorphism classes
- previous example: $\mathbb{Q}(\alpha)=\mathbb{Q}[x] /\left(x^{3}+10 x^{2}-8\right)$

$$
\operatorname{ICM}(\mathbb{Z}[\alpha])=\{\underbrace{[\mathbb{Z}[\alpha]]}_{\operatorname{Pic}(\mathbb{Z}[\alpha])}, \quad \underbrace{[S]}_{\operatorname{Pic}(S)}, \quad \underbrace{[\mathscr{O}]}_{\operatorname{Pic}(\mathscr{O})}, \quad\left[S^{t}\right]\}
$$

where $S=\mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \frac{\alpha^{2}}{2} \mathbb{Z}$ and $S^{t}=\mathbb{Z} \oplus\left(\frac{2+\alpha}{4}\right) \mathbb{Z} \oplus\left(\frac{188-312 \alpha+\alpha^{2}}{3784}\right) \mathbb{Z}$.

- S^{t} is a non-invertible ideal with $\left(S^{t}: S^{t}\right)=S$
(S is not Gorenstein)

How to handle the "unsual cases"?

- We want an algorithm that always works!
- Solution: first problem locally: (Dade, Taussky, Zassenhaus '62) Say that I and J are weakly equivalent if:

$$
\begin{gathered}
I_{\mathfrak{p}} \simeq_{R_{\mathfrak{p}}} J_{\mathfrak{p}} \text { for every } \mathfrak{p} \in \mathrm{mSpec}(R) \text { local nature! } \\
\hat{\Downarrow} \\
1 \in(I: J)(J: I) \text { easy to check! } \\
\hat{\Downarrow} \\
(I: I)=(J: J)=S \text { and } \exists L \text { invert. in } S \text { s.t. } I=L J
\end{gathered}
$$

- Let $W(R)$ be the monoid of weak eq. classes

Recover $\operatorname{ICM}(R)$ from $\mathscr{W}(R)$

Partition w.r.t. the multiplicator rings:

$$
\begin{aligned}
\mathscr{W}(R) & =\bigsqcup_{R \subseteq S \subseteq \mathscr{O}_{K}} W_{S}(R) \\
\mathrm{ICM}(R) & =\bigsqcup_{R \subseteq S \subseteq \mathscr{O}_{K}} \operatorname{ICM}_{S}(R)
\end{aligned}
$$

$W_{S}(R)$ and $\operatorname{ICM}_{S}(R)$ mean "only classes with multiplicator ring $=S^{\prime \prime}$

Theorem (M.)
For every over-order S of $R, \operatorname{Pic}(S)$ acts freely on $\operatorname{ICM}_{S}(R)$ and the quotient is

$$
W_{S}(R)=\operatorname{ICM}_{S}(R) / \operatorname{Pic}(S)
$$

Repeat for every $R \subseteq S \subseteq \mathscr{O}_{K}: \rightsquigarrow \operatorname{ICM}(R)$.

How to compute $\mathbb{W}_{S}(R)$

- Define the trace-dual of S as $S^{t}=\{x \in K: \operatorname{Tr}(x S) \subseteq \mathbb{Z}\}$
- Let T be the (smallest) over-order of S s.t. $S^{t} T$ is invertible in T.
- Let I with $(I: I)=S$. Since $I \cdot I^{t}=S^{t}$, it follows that $I T$ si invertible in T and hence (up to weak equivalence) we can assume that $I T=T$.
- We get that

$$
\mathfrak{f} \subset l \subset T,
$$

where $\mathfrak{f}=(S: T)$ is the "relative" conductor of S in T.

Proposition

We can find all representatives of $\mathscr{W}_{S}(R)$ in:

$$
\left\{\text { frac.S-ideals : } \mathfrak{f \subset I \subset T \} \longleftrightarrow \{ \text { sub-S-modules of } T / / f \} \begin{array} { c }
{ \text { finite!!! } } \\
{ \text { (and often } } \\
{ \text { not too big) } }
\end{array}}\right.
$$

Recap

- A quick recap:

$$
\mathscr{W}_{S}(R) \xrightarrow{\text { act with } \operatorname{Pic}(S)} \mathrm{ICM}_{S}(R) \xrightarrow{\text { repeat for every } S} \mathrm{ICM}(R) \quad \text { Hurra! }
$$

- Observe: $\mathbb{W}_{S}(R)$ and $\operatorname{Pic}(S)$ are finite for every S. So $\operatorname{ICM}(R)$ is finite
- So we can compute ICM's and hence representatives of the conjugacy classes of \mathbb{Z}-matrices with irreducible char. polynomial.

Isomorphism testing

- We also have all the ingredients to solve the isomorphism problem for ideals and hence the conjugacy test for matrices.

Proposition
Let I and J frac.ideals. Put $S=(I: I)$. Then

$$
I \simeq J \Longleftrightarrow\left\{\begin{array}{l}
I \text { weakly eq. } J \\
(I: J) \text { is a principal S-ideal }
\end{array}\right.
$$

Proof: we know that if I is weakly eq. to J then there exists an invertible S-ideal L such that $I=L J$. One can prove that $L=(I: J)$. Hence $I=z J$ iff $(I: J)=z S$ for some z.

Example 1

Weak equivalence classes of $\mathbb{Z}[\alpha]$ in $\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(h)$ where $h=x^{3}+31 x^{2}+43 x+77$.

Figure: Each vertex is labeled as $\left(S_{i}, \# W_{S_{i}}(\mathbb{Z}[\alpha])\right)$. The edges are marked by the index of the corresponding inclusion.

Example 2

Everything I told you generalizes verbatim to the case when h is square-free

Weak equivalence classes of the monogenic order of $\mathbb{Q}[x] /(h)$ where

$$
h=\left(x^{2}+4 x+7\right)\left(x^{3}-9 x^{2}-3 x-1\right) .
$$

Example 3

Consider in $\mathbb{Q}(\alpha)=\mathbb{Q}[x] /\left(x^{3}+10 x^{2}-8\right)$ the frac. $\mathbb{Z}[\alpha]$-ideals:

$$
I=3 \mathbb{Z} \oplus(\alpha+2) \mathbb{Z} \oplus\left(\alpha^{2}+2\right) \mathbb{Z} \quad J=3 \mathbb{Z} \oplus(\alpha+2) \mathbb{Z} \oplus\left(\frac{\alpha^{2}+2 \alpha}{8}\right) \mathbb{Z}
$$

We have $I \simeq J \simeq \mathbb{Z}[\alpha]$. More precisely: $\left(\alpha^{2}+\alpha\right) J=I$.
Matrices:

$$
m_{l}:=\left(\begin{array}{ccc}
1 & 0 & -1 \\
3 & -1 & -1 \\
0 & 1 & -10
\end{array}\right), \quad m_{J}:=\left(\begin{array}{ccc}
1 & -1 & 1 \\
3 & -3 & 2 \\
0 & 8 & -8
\end{array}\right), \quad V:=\left(\begin{array}{ccc}
2 & -1 & 1 \\
3 & -1 & 1 \\
3 & -10 & 9
\end{array}\right) .
$$

Notice: V is represents \mathbb{Z}-basis of J times $\left(\alpha^{2}+\alpha\right)$ w.r.t the \mathbb{Z}-basis of I. We have

$$
V \cdot m_{J} \cdot V^{-1}=m_{J}
$$

Generalization and related work

- the bijection between conj. classes of matrices and isomorphism classes of modules in product of number fields holds in much greater generality: see D. Husert PhD thesis 2016.
- there is a working algorithm to test conjugacy of matrices (no assumptions!) see Hofmann, Eick, O’Brien, 2019. (but no representatives for the conj. classes)
- the algorithms presented (both conj. test and representatives) generalize to the case when $\operatorname{char}_{A}(x)=m(x)^{N}$ with $m(x)$ square-free and the order $\mathbb{Z}[x] /(m)$ is Bass. see Marseglia 2020.
- Also ICM's are "everywhere" :-p there is an equivalence of categories
$\left\{\begin{array}{l}\text { ordinary abelian varieties over } \mathbb{F}_{q} \\ \text { with squarefree } q \text {-Weil poly. } h(x)\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { frac. ideals of } \mathbb{Z}[F, q / F] \\ \text { in } \mathbb{Q}[F]=\mathbb{Q}[x] /(h(x))\end{array}\right\}$

Thanks for your attention

