Products and Polarizations of
 Super-Isolated Abelian Varieties

Stefano Marseglia

Utrecht University

Simon Fraser University - (Q)NTAG - 03 December 2020

Today's plan:

- Quick intro: Abelian Varieties
- Super-Isolated Abelian Varieties (SIAV)
- Weil generators
- ideal varieties: equivalence of categories
- Products of SIAV
- Principal Polarization on SIAV
- Applications (powers and Jacobians)

Also, all morphisms are defined over the field of definition! Joint work with Travis Scholl.

Abelian Varieties

- An abelian variety A over a field k is a projective geometrically connected group variety over k.
We have morphisms $\oplus: A \times A \rightarrow A, \ominus: A \rightarrow A$ and a k-rational point $e \in A(k)$ such that (A, \oplus, \ominus, e) is a group object in the category of projective geom. connected varieties over k.
- In practice, we have diagrams \rightsquigarrow "natural" group structure on $A(\bar{k})$.
- eg. (\ominus is the "inverse" morphism)

Example: $\operatorname{dim} A=1$ elliptic curves

- AVs of dimension 1 are called Elliptic Curves.
- They admit a plane model: if char $k \neq 2,3$

$$
Y^{2} Z=X^{3}+A X Z^{2}+B Z^{3} \quad A, B \in k \text { and } e=[0: 1: 0]
$$

- The groups law is explicit:
if $P=\left(x_{P}, y_{P}\right)$ then $\ominus P=\left(x_{P},-y_{P}\right)$ and
if $Q=\left(x_{Q}, y_{Q}\right) \neq \ominus P$ then $P \oplus Q=\left(x_{R}, y_{R}\right)$ where

$$
x_{R}=\lambda^{2}-x_{P}-x_{Q}, \quad y_{R}=y_{P}+\lambda\left(x_{R}-x_{P}\right)
$$

where

$$
\lambda= \begin{cases}\frac{3 x_{P}^{2}+B}{2 A} & \text { if } P=Q \\ \frac{y P-y_{Q}}{x_{P}-x_{Q}} & \text { if } P \neq Q\end{cases}
$$

Example: EC over \mathbb{R}

Over \mathbb{R} :

consider the abelian variety:

$$
y^{2}=x^{3}-x+1
$$

Addition law: $P, Q \leadsto P \oplus Q$

Motivation: why SIAV?

- Super-Isolated AVs (SIAV) where introduced by Scholl in the context of Elliptic Curves Cryptography:
- ECDLP: Consider E / \mathbb{F}_{p}. Pick $P, Q \in E\left(\mathbb{F}_{p}\right)$. Solve

$$
k P=Q .
$$

- Fastest 'general' attack is Pollard $\rho \rightsquigarrow O(\sqrt{p})$ running-time.

A possible attack:

- if there exists a 'computable' map $\varphi: E \rightarrow E^{\prime}$ to a 'weak' curve E^{\prime}...
- ... then one can move the ECDLP and crack it on E^{\prime}.

Facts :

- 'computable' maps are common, 'weak' curves are not.

Prevention is better than cure:

- \rightsquigarrow 'isolated' EC : small conductor gap = no 'computable' maps.
- \rightsquigarrow 'super-isolated' EC : no maps at all! (to other EC)
- No reason to stick to dimension $1: \rightsquigarrow$ SIAV.

Some background: Isogeny classification

- A and B are isogenous if $\operatorname{dim} A=\operatorname{dim} B$ and \exists a surjective hom. $\varphi: A \rightarrow B$.
- Being isogenous is an equivalence relation.
- A / \mathbb{F}_{q} comes with a Frobenius endomorphism, that induces an action

$$
\operatorname{Frob}_{A}: T_{\ell} A \rightarrow T_{\ell} A \text { for any } \ell \neq p
$$

where $T_{\ell}(A)=\underset{\lfloor }{\lim } A\left[\ell^{n}\right] \simeq \mathbb{Z}_{\ell}^{2 d}$.

- $h_{A}(x):=\operatorname{char}\left(\operatorname{Frob}_{A}\right)$ is a q-Weil polynomial and isogeny invariant.
- By Honda-Tate theory, the association

$$
\text { isogeny class of } A \longmapsto h_{A}(x)
$$

is injective and allows us to list all isogeny classes.

SIAV : Definition

Let h be a char. polynomial $\rightsquigarrow \mathscr{C}_{h}$ isogeny class.
Definition

- \mathscr{C}_{h} is super-isolated if it contains only one isomorphism class.
- A / \mathbb{F}_{q} is super-isolated if $\mathscr{C}_{h_{A}}$ is so.

All information about A is encoded by the polynomial h_{A}.
Questions:

- How do we read from a q-Weil poly h whether \mathscr{C}_{h} is super-isolated?
- Can we count super-isolated \mathscr{C}_{h} ?
- What about polarizations?

Characterize SIAV

A special class of $A V s$

Definition

We say that $A / \mathbb{F}_{q} \in \mathscr{C}_{h_{A}}$ is ideal if
h_{A} is squarefree, i.e.
splits into distinct irred. factors,

- h_{A} has no real roots, and
- A is ordinary, or $q=p=\operatorname{char}\left(\mathbb{F}_{q}\right)$. ordinary : $A[p]\left(\bar{F}_{p}\right) \simeq(\mathbb{Z} / p \mathbb{Z})^{g}$

Theorem (Deligne 1969, Centeleghe-Stix 2015)
Let \mathscr{C}_{h} be an ideal isogeny class. There is an equivalence of categories:

$$
\mathscr{C}_{h} \longleftrightarrow\left\{\begin{array}{c}
\text { fractional- } \mathbb{Z}[\pi, \bar{\pi}] \text {-ideals } \\
\text { in the } C M \text {-étale algebra } \\
K_{h}=\mathbb{Q}[x] /(h)=\mathbb{Q}[\pi]
\end{array}\right\} . \quad \bar{\pi}=\frac{q}{\pi}
$$

If $A \leftrightarrow J$ then $\operatorname{End}(A) \leftrightarrow(J: J)=\left\{z \in K_{h}: z J \subseteq J\right\} \subseteq \mathscr{O}_{K}$.

Weil generators

Let K be an étale $C M-\mathbb{Q}$-algebra

$$
K=K_{1} \times \ldots \times K_{r}, \quad K_{i} \text { a CM-number field, }
$$

with ring of integers

$$
\mathscr{O}_{K}=\mathscr{O}_{K_{1}} \times \ldots \times \mathscr{O}_{K_{r}},
$$

and class group

$$
\operatorname{Pic}\left(\mathscr{O}_{K}\right)=\operatorname{Pic}\left(\mathscr{O}_{1}\right) \times \ldots \times \operatorname{Pic}\left(\mathscr{O}_{K_{r}}\right) .
$$

Definition

Let $n \in \mathbb{Z}$. An n-Weil generator for K is an element $\alpha \in K$ such that

- $\alpha \bar{\alpha}=n$ (i.e. in the image of the diagonal embedding $\mathbb{Z} \rightarrow K$),
- $\mathscr{O}_{K}=\mathbb{Z}[\alpha, \bar{\alpha}]$.

ideal SIAV \& Weil Generators

Theorem
Let \mathscr{C}_{h} be an ideal isogeny class \mathbb{F}_{q}. Put $K_{h}=\mathbb{Q}[x] /(h)=\mathbb{Q}[\pi]$.
Then:

$$
\mathscr{C}_{h} \text { is super-isolated } \Longleftrightarrow\left\{\begin{array}{l}
\pi \text { is a } q \text {-Weil generator of } K_{h}, \text { and } \\
K_{h} \text { has class number } 1 .
\end{array}\right.
$$

Proof: by the previous Theorem
$\left\{\right.$ isom. classes in $\left.\mathscr{C}_{h}\right\} \longleftrightarrow\{$ ideal classes of $\mathbb{Z}[\pi, \bar{\pi}]\}$.
Hence \mathscr{C}_{h} is super-isolated iff

$$
\mathbb{Z}[\pi, \bar{\pi}]=\mathscr{O}_{K_{h}} \text { and } K_{h} \text { has cl. number } 1 .
$$

QED

An example

Consider the polynomials

$$
\begin{aligned}
& h_{1}(x)=\left(x^{4}-2 x^{3}+3 x^{2}-4 x+4\right), \\
& h_{2}(x)=\left(x^{6}-4 x^{5}+9 x^{4}-15 x^{3}+18 x^{2}-16 x+8\right), \\
& h_{3}(x)=\left(x^{6}-3 x^{5}+6 x^{4}-9 x^{3}+12 x^{2}-12 x+8\right), \\
& h_{4}(x)=\left(x^{8}-5 x^{7}+12 x^{6}-20 x^{5}+29 x^{4}-40 x^{3}+48 x^{2}-40 x+16\right), \\
& h_{5}(x)=\left(x^{8}-5 x^{7}+13 x^{6}-25 x^{5}+39 x^{4}-50 x^{3}+52 x^{2}-40 x+16\right), \\
& h_{6}(x)=\left(x^{8}-4 x^{7}+5 x^{6}+2 x^{5}-11 x^{4}+4 x^{3}+20 x^{2}-32 x+16\right) .
\end{aligned}
$$

Let $h=\prod_{i} h_{i}$ and put $K_{h}=\mathbb{Q}[x] /(h)=\mathbb{Q}[\pi]$. One computes that

$$
\mathscr{O}_{K_{h}}=\mathbb{Z}[\pi, 2 / \pi] \text { and } \# \operatorname{Pic}\left(\mathscr{O}_{K_{h}}\right)=1
$$

Hence \mathscr{C}_{h} is an isogeny class of 20-dimensional SIAV over \mathbb{F}_{2}.

A non-example

Over \mathbb{F}_{5} let

$$
A=E_{1} \times E_{2}
$$

where

$$
E_{1}: y^{2}=x^{3}+4 x+2 \text { and } E_{2}: y^{2}=x^{3}+3 x+2
$$

By the Theorem $\rightsquigarrow E_{1}$ and E_{2} are SIEC, but A is not! Indeed:

$$
\mathbb{Z}\left[\pi_{A}, \overline{\pi_{A}}\right] \subsetneq \mathscr{O} K_{h_{A}}=\mathbb{Z}\left[\pi_{1}\right] \times \mathbb{Z}\left[\pi_{2}\right]=\operatorname{End}(A)
$$

So there exists A^{\prime} isogenous to A with $\operatorname{End}\left(A^{\prime}\right)=\mathbb{Z}\left[\pi_{A}, \overline{\pi_{A}}\right]$. In particular A is not isomorphic to A^{\prime}.

Count SIAV

How many Weil generators ? Simple case

For a number field K, for $z \in K$, we define the height of z as

$$
h(z)=\max \{|\varphi(z)|: \varphi: K \rightarrow \mathbb{C}\} .
$$

Theorem (Scholl 2020)
Let W be the set of Weil generator in a CM-field K of degree $2 g$. Then

$$
\#\{\alpha \in W: h(\alpha) \leq N\}= \begin{cases}4 N+O(1) & g=1 \\ \rho \log N+O(1) & g=2 \text { and } W \neq \varnothing \\ O(1) & g \geq 3\end{cases}
$$

where ρ is a constant depending on K.

Idea of the proof: All Weil generators α of K can be written in a special form:

$$
\alpha=\frac{u(\gamma-\bar{\gamma})+\eta+a}{2}
$$

for a fixed γ such that $\mathscr{O}_{K}=\mathscr{O}_{F}[\gamma]$, where F is the unique totally real subfield of K, and unique triple (u, η, a) with

- $u \in \mathscr{O}_{F}$.
- $\eta \in T=\left\{\beta: \mathscr{O}_{F}=\mathbb{Z}[\beta]\right\}$. Note T is finite (up to \mathbb{Z}-translation).
- $a \in \mathbb{Z}$.

Exploit this formula to enumerate the Weil generators.

How many Weil generators ? Non-simple case

Theorem
Let $K=K_{1} \times \ldots \times K_{n}$ be a CM-algebra, with K_{i} number fields. If $n>1$ then K has finitely many Weil generators.

Proof:
(1) Enough to prove it for $K=K_{1} \times K_{2}$.
(2) Write Weil generators α_{i} of K_{i} as:

$$
\alpha_{i}=\frac{u_{i}\left(\gamma_{i}-\overline{\gamma_{i}}\right)+\eta_{i}+a_{i}}{2}
$$

(3) Resultant condition: $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ is a Weil generator for K iff

$$
\left|\operatorname{Res}\left(g_{1}, g_{2}\right)\right|=1
$$

where g_{i} is the minimal polynomial of $\alpha_{i}+\overline{\alpha_{i}}$.
(4) We get 3 equations \rightsquigarrow an affine variety X of $\operatorname{dim} X=0$.
(0) We conclude since $\{$ Weil gens of $K\} \xrightarrow{\text { finite-to-1 }} X(\mathbb{Z})$.

How many SIAV ?

Corollary

Let g be a positive integer. There are only finitely many ideal SIAV of dimension g which are not simple. In particular there are only finitely many finite fields \mathbb{F}_{q} for which such a variety might exist.

Proof:

(1) It is enough to count Weil generators for products of CM fields of class number 1.
(2) Stark '74: For a given degree, only finitely many such fields. The argument is constructive \rightsquigarrow Algorithm.

A list : non-simple SIAV of small dimension over \mathbb{F}_{q}

q	1×1	1×2	$1 \times 1 \times 2$	$1 \times 2 \times 2$	2×2
2	4	24	10	12	18
3	4	24	6	12	18
4		2			
5	2	12		2	6
7		8			
8		2			
9		2			
11	2	8	2	4	4
13		6			
17	2	8	2		
19					2
32		2			
41		2			

q	1×1	1×2	$1 \times 1 \times 2$	$1 \times 2 \times 2$	2×2
47		4			
59		2			
61		2			
83	2				
101	2				
173		2			
227	2				
257	2				
283		2			
383		2			
1523	2				
1601	2				
18131		2			

Polarizations

Principal Polarizations for ordinary SIAV

- A / \mathbb{F}_{q} be a simple ordinary SIAV of dimension $g . \rightsquigarrow A$ is ideal
- For $h=h_{A}$ let $K=\mathbb{Q}[x] / h=\mathbb{Q}(\pi)$.

Theorem

A does not admit a principal polarization if and only if $N_{K / \mathbb{Q}}(\pi-\bar{\pi})=1$ and the middle coefficient a_{g} of h is $-1 \bmod q$ if $q>2$ and $-1 \bmod 4$ if $q=2$.

Proof: In Howe '95 there is a characterization of when an ordinary isogeny class \mathscr{C}_{h} contains a PPAV in terms of the ramification of K / F. Since A is SIAV, then $\mathscr{O}_{K}=\mathscr{O}_{F}[\pi]$, and hence $\operatorname{Diff}_{K / F}=(\pi-\bar{\pi}) \mathscr{O}_{F}$. This allows us to conclude. QED

Uniqueness of Principal Polarizations

Theorem

Let A be a simple super-isolated ordinary abelian variety over \mathbb{F}_{q} which admits a principal polarization. Then the polarization is unique up to polarized isomorphism.

Proof: The number of principal polarizations is given by the size of the quotient

$$
\frac{U_{F}^{+}}{N_{K / F}\left(U_{K}\right)},
$$

which is trivial since K has class number 1 .
QED

Corollary

Let A be an ordinary ideal SIAV, say $A=\prod_{1}^{n} A_{i}$ with A_{i} simple. Then A admits a principal polarization if and only if each A_{i} does. If this is the case, the principal polarization is unique up to polarized isomorphism.

Some applications

Powers of SIAVs

Theorem

Let A / \mathbb{F}_{q} be an ideal abelian variety. If A is super-isolated, then A^{n} is super-isolated for every $n \geq 1$. Conversely, if there exists $n \geq 1$ such that A^{n} is super-isolated then A is super-isolated.

Proposition

Let A be a super-isolated abelian variety. Then A^{8} is principally polarized.
Proof: use Zahrin's trick. QED

Remark

Let A be an ordinary ideal PPSIAV. Then A^{n} is PPSIAV for every $n>1$, but the princ. polarization is not necessarily unique.

What about Jacobians?

Proposition

Let C and C^{\prime} be smooth, projective and geometrically integral curves of genus $g>1$ defined over \mathbb{F}_{q} with the same zeta function. Assume that $\operatorname{Jac}(C)$ is ordinary, ideal, and super-isolated. Then the curves C and C^{\prime} are isomorphic.

Proof: $\operatorname{Jac}\left(C^{\prime}\right)$ is isogenous to $\operatorname{Jac}(C) \rightsquigarrow$ isomorphic since $\operatorname{Jac}(C)$ is SIAV. Denote by θ and θ^{\prime} the canonical princ. pols of $\operatorname{Jac}(C)$ and $\operatorname{Jac}\left(C^{\prime}\right)$. We deduce that $(\operatorname{Jac}(C), \theta)$ is isomorphic to $\left(\operatorname{Jac}\left(C^{\prime}\right), \theta^{\prime}\right)$. By Torelli's Theorem $\rightsquigarrow C \simeq C^{\prime}$. QED

Thank you!

