Cohen-Macaulay type of endomorphism rings of abelian varieties over finite fields

...or...
when an abelian variety met Bruns-Herzog's book.

Stefano Marseglia

Utrecht University

AGC²T 2023-6 June 2023.

Abelian varieties: Introduction

- Let A be an abelian variety over $\mathbb{F}_{q}, q=p^{a}$, of dimension g.
- $\operatorname{End}_{\mathbb{F}_{q}}(A)$ is a free \mathbb{Z}-module of finite rank ...
- $\ldots \operatorname{End}_{\mathbb{F}_{q}}(A) \subset \operatorname{End}_{\mathbb{F}_{q}}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$.
- Denote by $\pi_{A} \in \operatorname{End}_{\mathbb{F}_{q}}(A)$ the Frobenius endomorphism of $A \ldots$
- ... and by $h_{A}(x)$ the characteristic polynomial of π_{A} acting on

$$
\pi_{A} \curvearrowright T_{\ell} A=\underset{\longleftrightarrow}{\lim A\left[I^{n}\right]} \simeq_{\mathbb{Z}_{\ell}} \mathbb{Z}_{\ell}^{2 g}, \quad \text { for a prime } \ell \neq p
$$

- Ex. $E / \mathbb{F}_{5}: Y^{2}=X^{3}+X \rightsquigarrow h_{E}(x)=x^{2}-2 x+5$.
- Ex. $C / \mathbb{F}_{3}: Y^{2}=X^{6}+X+1 \rightsquigarrow h_{\mathrm{Jac}(C)}(x)=x^{4}+3 x^{3}+6 x^{2}+9 x+9$.

Abelian varieties: endomorphism algebra

- Some facts (Tate + Weil conjectures):
- h_{A} does not depend on the choice of ℓ.
- $h_{A} \in \mathbb{Z}[x]$ of degree $2 g$.
- A / \mathbb{F}_{q} and B / \mathbb{F}_{q} are \mathbb{F}_{q}-isogenous $\Longleftrightarrow h_{A}=h_{B}$.
- h_{A} is squarefree (i.e. no repeated \mathbb{C}-roots) $\Longleftrightarrow \operatorname{End}_{\mathbb{F}_{q}}(A)$ is commutative.
- From now on:
- We assume that h_{A} is squarefree.
- We identify $\operatorname{End}_{\mathbb{F}_{q}}(A) \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}[x] / h_{A}=\mathbb{Q}[\pi]$ by $\pi_{A} \mapsto \pi$.
- Note:
- $K=\mathbb{Q}[\pi]$ is a étale \mathbb{Q}-algebra (i.e. a finite product of number fields).
- $\mathbb{Z}[\pi, q / \pi] \subseteq \operatorname{End}_{⿷_{q}}(A) \subseteq \mathscr{O}_{K}$ are orders in K (an order R is a subring $R \subset K$ such that $R \simeq_{\mathbb{Z}} \mathbb{Z}^{\operatorname{dim}_{\mathbb{Q}} K}$).

Orders and fractional ideals in étale \mathbb{Q}-algebras

- Let R be an order in a étale \mathbb{Q}-algebra K.
- A fractional R-ideal is a sub- R-module $I \subset K$ such that $I \simeq_{\mathbb{Z}} \mathbb{Z}^{\operatorname{dim}_{\mathbb{Q}} K}$.
- Given fr. R-ideals I, J then

$$
(I: J)=\{a \in K: a J \subseteq I\} \quad \text { and } \quad I^{t}=\left\{a \in K: \operatorname{Tr}_{K / \mathbb{Q}}(a l) \subseteq \mathbb{Z}\right\}
$$

are also fr. R-ideals.

- We have $(I: I)^{t}=I \cdot I^{t}$.
- A fr. R-ideal I is invertible if $I(R: I)=R \ldots$
- ... or, equivalently, $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$-modules for every \mathfrak{p} maximal R-ideal.
($R_{\mathfrak{p}}$ is the completion of R at \mathfrak{p})
- If I is invertible, then $(I: I)=R$.

Cohen-Macaulay type and Gorenstein orders

- Def: The (Cohen-Macaulay) type of R at a maximal ideal \mathfrak{p} is

$$
\operatorname{type}_{\mathfrak{p}}(R):=\operatorname{dim}_{R / \mathfrak{p}} \frac{R^{t}}{\mathfrak{p} R^{t}}
$$

- Def: R is Gorenstein at \mathfrak{p} if $\operatorname{type}_{\mathfrak{p}}(R)=1$.
- Remark: these definitions coincides with the 'usual' ones.
- Ex: monogenic $\mathbb{Z}[\alpha]$ and maximal \mathscr{O}_{K} orders are Gorenstein. (also $\mathbb{Z}[\pi, q / \pi]$ for AVs).
- Ex: pick a prime $\ell \in \mathbb{Z}$. Then $\operatorname{type}_{\ell \mathscr{O}_{K}}\left(\mathbb{Z}+\ell \mathscr{O}_{K}\right)=\operatorname{dim}_{\mathbb{Q}} K-1$.

Classification for orders of type ≤ 2

Theorem

Let \mathfrak{p} be a maximal ideal of R, and I a fr. R-ideal with $(I: I)=R$.
(1) If $\operatorname{type}_{\mathfrak{p}}(R)=1$ (Gorenstein) then $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$-modules.
(2) If $\operatorname{type}_{\mathfrak{p}}(R)=2$ then either $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ or $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^{t}$ as $R_{\mathfrak{p}}$-modules.

Part 1 is contained (in a much more general form) in the "Ubiquity" paper by H. Bass.
Part 2 is new, and we give a proof.

Lemma

Let U, V, W be vectors spaces (over some field). Assume that $\operatorname{dim} W \geq 2$, and let $m: U \otimes V \rightarrow W$ be a surjective map. Then:
(1) $\exists u \in U$ such that $\operatorname{dim}(m(u \otimes V)) \geq 2$, or
(2) $\exists v \in V$ such that $\operatorname{dim}(m(U \otimes v)) \geq 2$.

Proof of Part 2

- Put $U=I / \mathfrak{p} l, V=I^{t} / \mathfrak{p} I^{t}$ and $W=R^{t} / \mathfrak{p} R^{t}$.
- By assumption $R^{t}=I \cdot I^{t}$, so the map $m: U \otimes V \rightarrow W$ induced by multiplication $I \times I^{t} \rightarrow R^{t}$ is surjective.
- Moreover, $\operatorname{dim} W=2$ (because of the assumption on the type).
- By the Lemma:
(1) $\exists x \in I$ such that $m((x+\mathfrak{p} /) \otimes V)=\frac{x I^{t}+\mathfrak{p} R^{t}}{\mathfrak{p} R^{t}}$ equals W.

By Nakayama's lemma: $I_{\mathfrak{p}}^{t} \simeq R_{\mathfrak{p}}^{t} \Longleftrightarrow R_{\mathfrak{p}} \simeq I_{\mathfrak{p}}, \ldots$
(2) ...or, $\exists y \in I^{t}$ such that $U \otimes m\left(U \otimes(y+\mathfrak{p}) I^{t}\right)=W$ implying $I_{\mathfrak{p}}^{t} \simeq R_{\mathfrak{p}} \Longleftrightarrow I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^{t}$.

Back to AVs: Categorical equivalence(s)

Fix a squarefree characteristic poly $h(x)$ of Frobenius π over \mathbb{F}_{q}.
Put $K=\mathbb{Q}[x] / h=\mathbb{Q}[\pi]$.
Let \mathscr{I}_{h} be the corresponding isogeny class.
Theorem
Assume that $q=p$ is prime or that \mathscr{I}_{h} is ordinary.
Then there is an equivalence of categories

$$
\begin{gathered}
\left\{\mathscr{I}_{h} \text { with } \mathbb{F}_{q} \text {-morphisms }\right\} \\
\vdots \\
\{\text { fr. } \mathbb{Z}[\pi, q / \pi] \text {-ideals with linear morphisms }\}
\end{gathered}
$$

Moreover, if $A \mapsto I$ then $A^{\vee} \mapsto \bar{l}^{t}$, where $\overline{\text { is }}$ isfined by $\bar{\pi}=q / \pi$ (the CM-involution).

References: Deligne, Howe, Centeleghe-Stix, Bergström-Karemaker-M.

AVs: self-duality

Theorem (Springer-M.)
\mathscr{I}_{h} and $K=\mathbb{Q}[\pi]=\mathbb{Q}[x] / h$ as before.
Let R be an order in K and \mathfrak{p} a maximal ideal of R (possibly but not necessarily above p). Assume:

$$
R=\bar{R}, \quad \mathfrak{p}=\overline{\mathfrak{p}}, \quad \text { and } \quad \operatorname{type}_{\mathfrak{p}}(R)=2
$$

Then for every $A \in \mathscr{I}_{h}$ such that $\operatorname{End}(A)=R$ we have that $A \neq A^{\vee}$. In particular, such an A cannot be principally polarized nor a Jacobian.

Proof: Say that $A \mapsto I$. Hence $A^{\vee} \mapsto \bar{l}^{t}$.
By the Classification: either $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ or $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^{t}$.
In the first case: $\bar{I}_{\mathfrak{p}}^{t}=\bar{I}_{\bar{p}}^{t} \simeq R_{\mathfrak{p}}^{t} \neq R_{\mathfrak{p}}$.
Similarly, in the second: $\bar{I}_{\mathfrak{p}}^{t}=\bar{I}_{\bar{p}}^{t} \simeq R_{\mathfrak{p}} \neq R_{\mathfrak{p}}^{t}$.
In both cases: $I \neq \bar{I}^{t} \Longleftrightarrow A \neq A^{v}$.

Some stats and refs

Soon on the LMFDB there will be tables of isomorphism classes of $\mathrm{AVs} / \mathbb{F}_{q}$. Over 615269 isogeny classes for $1 \leq g \leq 5$ and various q, we encountered

- 3.914.908 commutative endomorphism rings, of which:
- 72.6% satisfy $R=\bar{R}$;
- 10.3\% satisfy $R=\bar{R}$ and are non-Gorenstein;
- 7.4\% satisfy $R=\bar{R}$, are non-Gorenstein and the Theorem applies.

References:

- Cohen-Macaulay type of orders, generators and ideal classes https://arxiv.org/abs/2206.03758
- Abelian varieties over finite fields and their groups of rational points with Caleb Springer, https://arxiv.org/abs/2211.15280
- Magma package for étale \mathbb{Q}-algebras https://github.com/stmar89/AlgEt (also in Magma 2-28.1, without documentation...)

Thank you!

