Cohen-Macaulay type of endomorphism rings of abelian varieties over finite fields

when an abelian variety met Bruns-Herzog's book.

Stefano Marseglia

Utrecht University

AGC²T 2023 - 6 June 2023.

Abelian varieties : Introduction

- Let A be an **abelian variety** over \mathbb{F}_q , $q = p^a$, of dimension g.
- $\operatorname{End}_{\mathbb{F}_{q}}(A)$ is a free \mathbb{Z} -module of finite rank ...

• ...
$$\operatorname{End}_{\mathbb{F}_q}(A) \subset \operatorname{End}_{\mathbb{F}_q}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$$

- Denote by $\pi_A \in \operatorname{End}_{\mathbb{F}_a}(A)$ the Frobenius endomorphism of A...
- ... and by $h_A(x)$ the characteristic polynomial of π_A acting on

$$\pi_A \curvearrowright T_\ell A = \varprojlim_{\mathcal{A}} A[I^n] \simeq_{\mathbb{Z}_\ell} \mathbb{Z}_\ell^{2g}, \quad \text{for a prime } \ell \neq p.$$

- Ex. $E/\mathbb{F}_5: Y^2 = X^3 + X \rightsquigarrow h_E(x) = x^2 2x + 5.$
- Ex. $C/\mathbb{F}_3: Y^2 = X^6 + X + 1 \rightsquigarrow h_{\mathsf{Jac}(C)}(x) = x^4 + 3x^3 + 6x^2 + 9x + 9.$

Abelian varieties : endomorphism algebra

- Some facts (Tate + Weil conjectures):
 - h_A does not depend on the choice of ℓ .
 - $h_A \in \mathbb{Z}[x]$ of degree 2g.
 - A/\mathbb{F}_q and B/\mathbb{F}_q are \mathbb{F}_q -isogenous $\iff h_A = h_B$.
 - h_A is squarefree (i.e. no repeated C-roots) ⇔ End_{Fq}(A) is commutative.
- From now on:
 - We assume that h_A is squarefree.
 - We identify $\operatorname{End}_{\mathbb{F}_q}(A) \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[x]/h_A = \mathbb{Q}[\pi]$ by $\pi_A \mapsto \pi$.
- Note:
 - $K = \mathbb{Q}[\pi]$ is a étale \mathbb{Q} -algebra
 - (i.e. a finite product of number fields).
 - $\mathbb{Z}[\pi, q/\pi] \subseteq \operatorname{End}_{\mathbb{F}_q}(A) \subseteq \mathcal{O}_K$ are orders in K(an **order** R is a subring $R \subset K$ such that $R \simeq_{\mathbb{Z}} \mathbb{Z}^{\dim_{\mathbb{Q}} K}$).

Orders and fractional ideals in étale Q-algebras

- Let *R* be an order in a étale Q-algebra *K*.
- A fractional *R*-ideal is a sub-*R*-module $I \subset K$ such that $I \simeq_{\mathbb{Z}} \mathbb{Z}^{\dim_{\mathbb{Q}} K}$.
- Given fr. R-ideals I, J then

 $(I:J) = \{a \in K : aJ \subseteq I\}$ and $I^t = \{a \in K : \operatorname{Tr}_{K/\mathbb{Q}}(aI) \subseteq \mathbb{Z}\}$

are also fr. *R*-ideals.

- We have $(I:I)^t = I \cdot I^t$.
- A fr. R-ideal I is invertible if I(R:I) = R ...
- ... or, equivalently, I_p ≃ R_p as R_p-modules for every p maximal R-ideal. (R_p is the completion of R at p)
- If I is invertible, then (I:I) = R.

Cohen-Macaulay type and Gorenstein orders

Def: The (Cohen-Macaulay) type of R at a maximal ideal p is

$$\operatorname{type}_{\mathfrak{p}}(R) := \dim_{R/\mathfrak{p}} \frac{R^t}{\mathfrak{p}R^t}.$$

- Def: R is **Gorenstein** at \mathfrak{p} if type_{\mathfrak{p}}(R) = 1.
- Remark: these definitions coincides with the 'usual' ones.
- Ex: monogenic Z[α] and maximal 𝒞_K orders are Gorenstein. (also Z[π, q/π] for AVs).
- Ex: pick a prime $\ell \in \mathbb{Z}$. Then type $_{\ell \mathcal{O}_{K}}(\mathbb{Z} + \ell \mathcal{O}_{K}) = \dim_{\mathbb{Q}} K 1$.

Classification for orders of type ≤ 2

Theorem

Let \mathfrak{p} be a maximal ideal of R, and I a fr. R-ideal with (I:I) = R.

- If type_p(R) = 1 (Gorenstein) then $I_p \simeq R_p$ as R_p -modules.
- 3 If type_p(R) = 2 then either $I_p \simeq R_p$ or $I_p \simeq R_p^t$ as R_p -modules.

Part 1 is contained (in a much more general form) in the "Ubiquity" paper by H. Bass.

Part 2 is new, and we give a proof.

Lemma

Let U, V, W be vectors spaces (over some field). Assume that dim $W \ge 2$, and let $m: U \otimes V \rightarrow W$ be a surjective map. Then:

- **●** $\exists u \in U$ such that dim $(m(u \otimes V)) \ge 2$, or
- ② $\exists v \in V \text{ such that } \dim(m(U \otimes v)) \ge 2.$

Proof of Part 2

- Put $U = I/\mathfrak{p}I$, $V = I^t/\mathfrak{p}I^t$ and $W = R^t/\mathfrak{p}R^t$.
- By assumption R^t = I · I^t, so the map m: U ⊗ V → W induced by multiplication I × I^t → R^t is surjective.
- Moreover, dim W = 2 (because of the assumption on the type).
- By the Lemma:
 - ∃x ∈ I such that m((x+pI) ⊗ V) = xI^t+pR^t/pR^t equals W. By Nakayama's lemma: I^t_p ≃ R^t_p ⇔ R_p ≃ I_p,...
 ...or, ∃y ∈ I^t such that U ⊗ m(U ⊗ (y+p)I^t) = W implying I^t_p ≃ R_p ⇔ I_p ≃ R^t_p.

Back to AVs: Categorical equivalence(s)

Fix a squarefree characteristic poly h(x) of Frobenius π over \mathbb{F}_q . Put $K = \mathbb{Q}[x]/h = \mathbb{Q}[\pi]$. Let \mathscr{I}_h be the corresponding isogeny class.

Theorem

Assume that q = p is prime or that \mathcal{I}_h is ordinary. Then there is an **equivalence** of categories

$$\{ \mathscr{I}_h \text{ with } \mathbb{F}_q - \text{morphisms } \}$$

 \uparrow
 $\{ \text{fr. } \mathbb{Z}[\pi, q/\pi] \text{-ideals with linear morphisms } \}$

Moreover, if $A \mapsto I$ then $A^{\vee} \mapsto \overline{I}^t$, where $\overline{\cdot}$ is defined by $\overline{\pi} = q/\pi$ (the CM-involution).

References: Deligne, Howe, Centeleghe-Stix, Bergström-Karemaker-M.

AVs: self-duality

Theorem (Springer-M.)

 \mathscr{I}_h and $K = \mathbb{Q}[\pi] = \mathbb{Q}[x]/h$ as before. Let R be an order in K and \mathfrak{p} a maximal ideal of R (possibly but not necessarily above p). Assume:

$$R = \overline{R}, \quad \mathfrak{p} = \overline{\mathfrak{p}}, \quad and \quad \operatorname{type}_{\mathfrak{p}}(R) = 2.$$

Then for every $A \in \mathscr{I}_h$ such that End(A) = R we have that $A \neq A^{\vee}$. In particular, such an A cannot be principally polarized nor a Jacobian.

Proof: Say that $A \mapsto I$. Hence $A^{\vee} \mapsto \overline{I}^t$. By the Classification: either $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}$ or $I_{\mathfrak{p}} \simeq R_{\mathfrak{p}}^t$. In the first case: $\overline{I}_{\mathfrak{p}}^t = \overline{I}_{\overline{\mathfrak{p}}}^t \simeq R_{\mathfrak{p}}^t \neq R_{\mathfrak{p}}$. Similarly, in the second: $\overline{I}_{\mathfrak{p}}^t = \overline{I}_{\overline{\mathfrak{p}}}^t \simeq R_{\mathfrak{p}} \neq R_{\mathfrak{p}}^t$. In both cases: $I \neq \overline{I}^t \iff A \neq A^{\vee}$.

Some stats and refs

Soon on the LMFDB there will be tables of isomorphism classes of AVs/\mathbb{F}_q . Over 615269 isogeny classes for $1 \le g \le 5$ and various q, we encountered

- 3.914.908 commutative endomorphism rings, of which:
- 72.6% satisfy $R = \overline{R}$;
- 10.3% satisfy $R = \overline{R}$ and are non-Gorenstein;
- 7.4% satisfy $R = \overline{R}$, are non-Gorenstein and the Theorem applies.

References:

- Cohen-Macaulay type of orders, generators and ideal classes https://arxiv.org/abs/2206.03758
- Abelian varieties over finite fields and their groups of rational points with Caleb Springer, https://arxiv.org/abs/2211.15280
- Magma package for étale Q-algebras https://github.com/stmar89/AlgEt (also in Magma 2-28.1, without documentation...)

Thank you!