
ABELIAN VARIETIES OVER FINITE FIELDS: AN INTRODUCTION

STEFANO MARSEGLIA

1. Abelian Varieties

1.1. Basic definitions. Let k be a field.

Definition 1.1. A group variety over a field k is a variety V together with morphisms

+ : V × V → V and − : V → V,

and a point ε ∈ V (k) such that the structure on V (k̄) defined by + and − is that of a group
with multiplication induced by +, inverse by − and identity element ε.

Equivalently, we can say that the quadruple (V,+,−, ε) is a group object in the category of
varieties over k.

Example 1.2. The requirement that V (k̄) is a group with multiplication +, inverse − and
neutral element ε can be equivalently expressed using diagrams. For example, the diagrams

V × V id×− // V × V

+

��
V

diag

OO

// Spec(k)
ε // V

V × V −×id // V × V

+

��
V

diag

OO

// Spec(k)
ε // V

encode the property for − : V → V to be the inverse.

For every geometric point a ∈ V (k̄), the projection Vk̄ × Vk̄ → Vk̄ induces an isomorphism
Vk̄ × {a} ≃ Vk̄. We define the translation ta by a as the composition

Vk̄ ≃ Vk̄ × {a} ⊂ Vk̄ × Vk̄
+→ Vk̄.

On points ta acts as P 7→ m(P, a). In particular if a ∈ V (k) then ta maps V into V .
For any variety the non-singular locus U is open and non-empty. For a group variety V the

translates of Uk̄ cover Vk̄, hence every group variety is non-singular.

Definition 1.3. A connected and complete group variety is called an abelian variety.

Definition 1.4. A homomorphism of abelian varieties is a morphism of varieties which is
compatible with the group variety operation.

In the next proposition we will sum up some interesting properties of abelian varieties.

Proposition 1.5. Let A be any abelian variety. Then

• every morphism f : A→ B of abelian varieties is the composite of a homomorphism
h : A→ B with a translation tb, where b = −f(εA) ∈ B(k);
• the group law on A is commutative;
• A is projective.
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Example 1.6. An abelian variety of dimension one is the same as an elliptic curve E, that
is, a smooth projective plane curve of degree 3 together with a chosen point. It is easy to
describe elliptic curves embedded in a projective space in terms of equations. For example, if
the characteristic of k is not 2 or 3 then E inside P2 = Proj(k[x, y]) is given by an equation of
the form

zy2 = x3 + axz2 + bz3,

for some a, b ∈ k such that 4a3 + 27b2 ̸= 0 with marked point (0 : 1 : 0). In this case it is
possible to give explicit formulas for the addition of two points. The theory of elliptic curves
is very rich and many results about them can be generalized to the higher dimensional case,
but they will have a much more abstract flavor, since in general it is hard to find equations
describing an abelian variety.

Exercise 1.7. Can you give an example of an abelian variety of dimension > 1?

Abelian varieties of dimension 1 can be described by one single equation in 3 projective
variables. The situation is dramatically different in higher dimension. Already in dimension 2,
in general, over an algebraically closed field, one needs 72 equations in 16 projective variables!
If you want to see the actual eqautions, check out [CF96].

1.2. Isogenies. Among all morphisms between abelian varieties, the so-called isogenies play a
special role since they allow us to split each abelian variety into a product of simple objects,
see Corollary 1.18. In particular, over a finite field, we can classify and enumerate up to
isogeny all abelian varieties of a given dimension, as we explain in Section 2.

Proposition 1.8. Let f : A→ B be a homomorphism of abelian varieties. The following are
equivalent:

(1) f is surjective and dim(A) = dim(B);
(2) ker(f) is a finite group scheme and dim(A) = dim(B);
(3) f is finite, flat and surjective.

Definition 1.9. A homomorphism f : A → B satisfying the conditions of 1.8 is called an
isogeny. The degree of an isogeny is the degree of the function field extension [k(A) : f∗k(B)].

Equivalently we can define the degree of an isogeny as the rank of its kernel as a group scheme.
Observe that the composition of two isogenies is an isogeny and the degree is multiplicative
with respect to composition.

Let n be a non-zero integer and consider the homomorphism multiplication by n, [n]A :
A→ A. Write A[n] := ker([n]A).

Proposition 1.10. The homomorphism [n]A is an isogeny. If g = dim(A) then deg([n]A) =
n2g.

Proposition 1.11. If f : A → B is an isogeny of degree d, then there exists an isogeny
g : B → A such that g ◦ f = [d]A and f ◦ g = [d]B.

Corollary 1.12. Being isogenous is an equivalence relation.

When we one has an equivalence relation, the irresistible thing to do is to try to describe
the equivalence classes! In order to so, we first show that an abelian variety is isogenous to a
product of “simple” ones.

Let A and B be abelian variety over the field k. If f and g are homomorphisms from A to
B then we can define a morphism

f + g = +B ◦ (f, g) : A
(f,g)−−−→ B ×k B

+B−−→ B.
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This shows that Homk(A,B) has the structure of an abelian group and that Endk(A) has a
ring structure with composition as multiplication.

If n ̸= 0 then [n]A is an isogeny and it is in particular surjective. This implies that
Homk(A,B) is torsion-free. We define

Hom0
k(A,B) = Homk(A,B)⊗Z Q and End0k(A) = Endk(A)⊗Z Q.

The Q-algebra End0k(A) is called the endomorphism algebra of A. Observe that every isogeny
f : A→ B becomes invertible in Hom0

k(A,B).

Theorem 1.13 (Poincaré Splitting Theorem). Let A be an abelian variety over a field k. If
B ⊂ A is an abelian sub-variety then there exists an abelian sub-variety C ⊂ A such that the
homomorphism f : B × C → A given by (x, y) 7→ x+ y is an isogeny.

Definition 1.14. An abelian variety A over the field k is simple if it does not have non-trivial
sub-varieties, that is, if B ⊂ A is a sub-variety, then B = 0 or B = A.

Exercise 1.15. Can you produce an example of a simple abelian variety? And a non-simple
one?

Exercise 1.16. Let f : A→ B be a homomorphism between abelian varieties. If A and B
are simple then f is either zero or an isogeny.

Let k′ be a field extension of k. An abelian variety defined over k and which is simple over
k need not be simple also over k′.

Example 1.17. Let q be a power of a prime number and let a be an integer such that |a| < 2
√
q

and coprime with q. Take an elliptic curve E over Fq2 in the isogeny class determined by

the polynomial x2 + ax+ q2, see Section 2 for the definition. Let A be the Weil restriction
Res(Fq2/Fq, E) of E to Fq. By our assumptions on a, we see that the characteristic polynomial

of Frobenius x4 + ax2 + q of A is irreducible. Hence A is simple over Fq, but it is isogenous to

E × E(q) over Fq2 , where E
(q) is the Fq-conjugate of E.

Corollary 1.18. Every non-zero abelian variety A over k is isogenous to a product of simple
abelian varieties over k. More precisely, there exist k-simple abelian varieties B1, . . . , Br,
pairwise non-isogenous, and positive integers mi, such that

A ∼k B
m1
1 × . . .×Bmr

r .

This decomposition is unique up to permutation of the indices.

2. Abelian varieties in positive characteristic

Assume from now on that k is a field of positive characteristic p (eg. k = Fpr , kF̄p or Fp(t))..

Exercise 2.1. • Show that σ : k → k, x 7→ xp is a field homomorphism.
• What are the fixed elements of σ?
• What are the fixed elements of σr?

The morphism described in the exercise induces a map on geometric objects defined over k.
More precisely, if S is a scheme (eg. an abelian variety) over Fp we define the absolute

Frobenius of S to be the morphism FS : S → S induced by the ring homomorphism OS →
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OS : x→ xp. Let A be a scheme over S. Define A(p) to be the fibered product A×S S induced
by the absolute Frobenius FS . We define the relative Frobenius FA/S of A by

A

��

FA

$$

FA/S

!!
A(p)

��

// A

��
S

FS // S

where FA is the relative Frobenius induced by the Fp-scheme structure of A and the vertical

arrows are the projection A(p) → S and the S-scheme structure map of A, respectively.

Example 2.2. Let A be the variety over Fq defined by a polynomial
∑

I aIX
I , where I is a

multi-index. Then A(p) is defined by
∑

I a
p
IX

I and the relative Frobenius FA/S is the map

Xi 7→ Xp
i .

If A is an abelian variety over a finite field Fpn then the relative Frobenius sends zero to

zero and so it is a homomorphism of group schemes. Moreover, we can identify A(pn) ≃ A and
we can define the Frobenius of A over Fpn as

πA =

(
A

FA/S−−−→ A(p)
F
A(p)/S−−−−−→ A(p2)

F
A(p2)/S−−−−−→ . . .→ A(pn−1)

F
A(pn−1)/S−−−−−−−→ A(pn) ≃ A.

)
.

Proposition 2.3. Let A be an abelian variety over k of dimension g, where k is field of
characteristic p > 0. Then the relative Frobenius FA/k is an isogeny of degree pg.

3. The Tate module of an abelian variety

Before giving the definition of the Tate module, we introduce the ℓ-adic numbers, where ℓ is
a prime number.

Exercise 3.1. Consider the sequence of ring homomorphisms

Z
ℓZ
← Z

ℓ2Z
← Z

ℓ3Z
← . . .

given by reductions. Define the ℓ-adic integers Zℓ as the inverse limit lim←−Z/ℓmZ, that is,

Zℓ =

(x1, x2, . . .) ∈
∏
m≥1

Z
ℓmZ

| xi = xi+1 mod ℓi

 .

Show that Zℓ is a commutative ring that contains Z.

Now, let A be an abelian variety over a perfect field k and let ℓ be a prime distinct from
the characteristic of k. Then the multiplication by ℓm is a group homomorphism whose kernel
A[ℓm] is a finite group scheme of rank (ℓm)2g, where g is the dimension of A. This implies
that A[ℓm] is étale and hence it is completely described by its k-points and the action of the
absolute Galois group G = Gal(k/k). The torsion groups A[ℓm] form an inverse system under
the multiplication by ℓ : A[ℓm+1]→ A[ℓm].

Definition 3.2. The ℓ-Tate module of A by

TℓA = lim←−A[ℓ
m](k).
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Exercise 3.3. Describe Tℓ(A) as a subset of a direct product and show that Tℓ(A) has a
natural structure as a Zℓ-module.

Proposition 3.4. The Tate module of A is a free Zℓ-module of rank 2 dim(A) and G acts on
it by Zℓ-linear maps.

Moreover, we have an isomorphism of G-modules A[ℓm](k) ≃ TℓA/ℓmTℓA.
Consider a homomorphism of abelian varieties φ : A→ B. For every m ≥ 1, it sends A[ℓm]

to B[ℓm]. Hence φ induces a morphism φℓ : TℓA→ TℓB. In particular, this makes Tℓ a functor
from the category of abelian varieties over k to the category of Zℓ[G]-modules.

Observe that HomZℓ[G](TℓA, TℓB) has finite rank.

Theorem 3.5 (Weil). Let A and B be two abelian varieties over a perfect field k and let ℓ be
prime number distinct from the characteristic of k. The natural morphism

φ : Hom(A,B)⊗Z Zℓ → HomZℓ[G](TℓA, TℓB)

is injective. In particular, Hom(A,B) is a free Z-module of finite rank.

Let A be an abelian variety over a finite field Fq. The Frobenius πA of A induces an
endomorphism Tℓ(πA) of TℓA. After choosing a basis of TℓA, that is, fixing a Zℓ-linear
isomorphism

Tℓ(A) ≃ Z2g
ℓ ,

where g = dim(A), one can represent Tℓ(πA) with a 2g× 2g-matrix with coefficients in Zℓ. Let
hA(x) be the characteristic polynomial of this matrix.

Lemma 3.6. The polynomial hA(x) has integer coefficients and it is independent of the choice
of ℓ ̸= p.

The polynomial hA will be called the characteristic polynomial of Frobenius πA, or simply
the characteristic polynomial of A.

4. Isogeny classification: Honda-Tate theorems

This section is dedicated at showing how the isogeny class of an abelian variety A defined
over a finite field Fq is completely determined by its characteristic polynomial, and how they
can be used to enumerate the isogeny classes (for a fixed dimension g).

Definition 4.1. Let q = pn be a prime power. A q-Weil number π is an algebraic integer
such that for every embedding ψ : Q(π)→ C we have |ψ(π)| = √q. We say that two q-Weil
numbers π and π′ are conjugate if there exists a field isomorphism Q(π) ≃ Q(π′) (sending π
to π′). Observe that this is equivalent to saying that the minimal polynomials over Q of π and
π′ are the same.

Theorem 4.2 (Weil). If A is a simple abelian variety over Fq then hA(x) = (m(x))e for
some Q-irreducible polynomial m(x) ∈ Z[x] and some strictly positive integer e. Moreover,
the Frobenius endomorphism πA of A/Fq can be identified with a conjugacy class of q-Weil
numbers.

Theorem 4.3 (Tate isogeny Theorem). Let A and B be two abelian varieties over the finite
field Fq, where q is a prime power, with characteristic polynomials hA and hB, respectively.
Then B is Fq-isogenous to a subvariety of A if and only if hB divides hA. Moreover, the
following are equivalent:

• A is Fq-isogenous to B
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• hA = hB
• A and B have the same number of points over Fqm for every m > 0.

Proof. See [Tat66, Theorem 3]. □

Consider the map Φ that sends a simple abelian variety A defined over Fq to its Frobenius
πA, considered as an algebraic integer. Observe that the characteristic polynomial hA of πA is
a power of an irreducible polynomial, which will be the minimal polynomial of πA over Q. In
view of Theorem 4.3, Φ induces an injective map between the isogeny classes of simple abelian
varieties over Fq and the conjugacy classes of q-Weil numbers. Honda in [Hon68] proved that
this is also surjective.

Theorem 4.4 (Honda-Tate). The map that sends a simple abelian variety A defined over Fq

to the algebraic integer πA defined by its Frobenius endomorphism induces a bijection between
the isogeny classes of simple abelian varieties over Fq and conjugacy classes of q-Weil numbers.

Proof. See [Tat66] and [Hon68]. □

Corollary 4.5. Let A be an abelian variety over Fq. Let m1, . . . ,mr be positive integers and
let B1, . . . Br be simple pairwise non-Fq-isogenous abelian varieties over Fq such that

A ∼Fq B
m1
1 × . . .×Bmr

r .

Then the Fq-isogeny class of A is uniquely determined by the pairs

(πB1 ,m1), . . . , (πBr ,mr).

The set {πB1 , . . . , πBr} is called the Weil support of A.

Exercise 4.6. Prove Corollary 4.5 using the previous results we have seen.

5. q-Weil polynomials

Let Fq be a finite field of positive characteristic p with q = pn elements.

Definition 5.1. A q-Weil polynomial is a monic polynomial in Z[x] of even positive degree 2g
whose set of complex roots has the form {w1, w̄1, . . . , wg, w̄g} and each wi has absolute value√
q, that is, is a q-Weil number. We denote the set of q-Weil polynomials of degree 2g by
Wq(g).

Proposition 5.2. Let A be an abelian variety over Fq with characteristic polynomial hA(x).
Then hA(x) is a q-Weil polynomial.

Proof. It follows from the results in Section 4. □

It is natural to wonder if the converse of Proposition 5.2 is true: is every polynomial in
Wq(g) the characteristic polynomial of some abelian variety defined over Fq of dimension g?
The answer is: no. But the subset of Wq(g) consisting of characteristic polynomials can be
completely understood using Corollary 4.5 and the following remark.

Remark 5.3. By Theorem 4.2, the characteristic polynomial of a simple abelian variety B
over Fq is of the form

hB(x) = m(x)e

for some Q-irreducible polynomial m(x) ∈ Z[x] whose roots are q-Weil numbers and some
strictly positive integer e. The exponent e is the least common denominator of the rational
numbers

(1)

{
vp(g1(0))

d
, . . . ,

vp(gs(0))

d

}
,
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where vp is the valuation of Qp, g1(x), . . . , gs(x) are the irreducible factors of m(x) over Qp[x]
and we add 1/2 to the set (1) if m(x) has a root in R.

Example 5.4. The isogeny class over F4 with LMFDB-label 4.4.ai bk aei ka has 4-Weil
polynomial h(x) = m(x)2, where m(x) is the irreducible polynomial

m(x) = x4 − 4x3 + 10x2 − 16x+ 16.

One can verify that m(x) is a 4-Weil polynomial, but it is not the characteristic polynomial of
an abelian variety over F4.

The following lemma contains easy but important observations about q-Weil polynomials.
These will be (often implicitly) used throughout the rest of the text.

Lemma 5.5. Let h(x) be a q-Weil polynomial. Then the following statements hold:

(1) all real roots of h(x), if any, occur with even multiplicities;
(2) h(x) = (x2g/qg)h(q/x);
(3) there are integers a1, . . . , ag such that

h(x) = x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg

Proof. Statement (1) follows immediately from the definition. Let w be a complex root of
h(x). We have w̄ = q/w. Then h(x) and (x2g/qg)h(q/x) are both monic polynomials with the
same set of roots. Hence they are equal as in statement (2). Finally, statement (3) follows
from (2), by comparing the coefficients. □

Exercise 5.6. Is this a characterization? That is, if h(x) is a polynomial in Z[x] satisfying
(1), (2) and (3), is then h(x) a q-Weil polynomial ?

Example 5.7. Together with our definition of q-Weil number, which is used for example in
[Hal10] and [HS12], there is (at least) another definition in the literature in which a q-Weil
polynomial is a monic integer polynomial whose complex roots have absolute value

√
q. To

avoid confusion, we will call polynomials satisfying this second more general convention, which
is used for example in [DKRV21], generalized q-Weil polynomials. We will not use this more
general notion outside of this example.

A generalized q-Weil polynomial can have odd degree. For example, if q = pn with n odd then
the minimal polynomial m1(x) = x2 − q of

√
q over Q is a generalized q-Weil polynomial but

not a q-Weil polynomial. Also, if n is even then m2(x) = x−√q and m3(x) = (x−√q)(x+√q)
are generalized q-Weil polynomials but not q-Weil polynomial.

Nevertheless, under the same assumptions on n as above, m1(x)
2, m2(x)

2 and m3(x)
2 are

q-Weil polynomials. In fact, they are characteristic polynomials of abelian varieties over Fq of
dimensions 2, 1 and 2, respectively.

In the following two well-known propositions, we compute the sets Wq(1) and Wq(2).

Proposition 5.8 (g = 1). Consider the polynomial h(x) = x2 + ax + q in Z[x]. Then
h(x) ∈ Wq(1) if and only if |a| ≤ 2

√
q.

Proof. The result follows immediately from the quadratic formula. □

Proposition 5.9 (g = 2). Let a and b be integers. Consider the polynomial h(x) = x4 + ax3 +
bx2 + aqx+ q2 in Z[x].

If h(x) is irreducible over Q then h(x) is in Wq(2) if and only if the following conditions
holds:

• |a| < 4
√
q,

https://www.lmfdb.org/Variety/Abelian/Fq/4/4/ai_bk_aei_ka
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• 2 |a| √q − 2q < b < a2/4 + 2q, and

• a2 − 4b+ 8q is not a square in Z.
If h(x) is reducible over Q then h(x) ∈ Wq(2) if and only if

(1) either h(x) = h1(x)h2(x) with h1(x), h2(x) ∈ Wq(1),
(2) or q is not a square and h(x) = (x2 − q)2.

Proof. The case when h(x) is irreducible is [R9̈0, Lemma 3.1]. So we assume for the rest of
the proof that h(x) is reducible over Q. It is clear if (1) or (2) hold then h(x) is in Wq(2).
Also, if q is a square, then (x−√q)2 and (x−√q)2 are in Wq(1). So (1) and (2) are mutually
exclusive. We are left to show that if h(x) ∈ Wq(2) is reducible over Q then (1) or (2) hold.

Assume first that h(x) has a linear divisor over Q, say (x − α). Then α = ±√q and q is

a square. By Lemma 5.5.(1), we have that h(x) = (x− α)2h2(x) for some h2(x) ∈ Z[x]. By
looking at the roots of h(x), we see that h2(x) ∈ Wq(1). So, (1) holds.

Assume for the rest of the proof that h(x) factors as the product of 2 irreducible quadratic
polynomials in Q[x]. If

√
q or −√q is a root, it must have a quadratic minimal polynomial.

Hence q is not a square and (x2 − q) divides h(x). By Lemma 5.5.(1), we (x2 − q)2 divides
h(x) and (2) holds. Finally, assume that h(x) = h1(x)h2(x) over Q, with h1(x) and h2(x)
irreducible over Q and with no real roots. Then we are in case (1). □

The next well-known proposition allows us to describe Wq(g), which consists of integer
polynomials of degree 2g, in terms of there roots of real polynomials of degree g.

Proposition 5.10. Let h(x) be a polynomial in Z[x] of the form

h(x) = x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg.

Then h(x) is in Wq(g) if and only if there exists ω1, . . . , ωg ∈ C such that

(2) h(x) =

g∏
i=1

(x2 + ωix+ q)

and the complex roots of the polynomials

h+(x) =

g∏
i=1

(x− (2
√
q − ωi)),

h−(x) =

g∏
i=1

(x− (2
√
q + ωi)),

are all in R≥0. Moreover, h(x) has no real roots if and only if the roots of h+(x) and h−(x)
are all positive.

Proof. Assume that h(x) is a q-Weil polynomial with complex roots w1, w̄1, . . . , wg, w̄g. For
i = 1, . . . , g, set ωi = −wi − w̄i. Then h(x) can be written as in Equation (2) and the complex
roots of h+(x) and h−(x) are in R≥0. If h(x) has a real root, say wi = ±

√
q, then ωi = ∓2

√
q.

Hence h+(0) = 0 or h−(0) = 0. This proves one direction. Now, we prove the converse
statement. Since the complex roots of h+(x) and h−(x) are in R≥0, each ωi is a real number
satisfying |ωi| ≤ 2

√
q. Hence, x2 + ωix+ q is a real polynomial with roots over the complex

numbers of the form αi and ᾱi. Then αiᾱi = q, that is the absolute value of αi is
√
q. It

follows by Equation (2) that each αi is an algebraic integer. Hence, h(x) is a q-Weil polynomial.
Assume in addition that h+(0) = 0. Then there exists an index i such that ωi = 2

√
q. Then

x2+ωix+ q, and hence also h(x), has a real root. In a similar fashion, we see that if h−(0) = 0
then h(x) has a real root, concluding the proof. □
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6. Computing and describing q-Weil polynomials of a fixed degree

In this section we give a brief overview of the known results about describing Wq(g) for
fixed g and q.

• An algorithm to computeWq(g) is described in [Ked08]. An implementation is included
in SageMath. This algorithm has been used to enumerate and study isogeny classes in
[DKRV21].
• The sets Wq(1) and Wq(2) are well known. They complete description is given in
Propositions 5.8 and 5.9 above.
• The sets Wq(3), Wq(4) and Wq(5) are described in [Hal10], [HS12] and [Soh13], respec-
tively. They all contain mistakes of various severity. In [Bra12] there is an attempt to
fix the result of [HS12]. But it contains a typo as well.
• Jun Jie Lin’s master thesis at Utrecht University fixed the issues https://studenttheses.
uu.nl/handle/20.500.12932/44249. The author of this note, who was the supervisor
of Lin, is slowly turning the thesis into an article, which should hopefully see the light
soon.
• The results cited above use Proposition 5.10 to reduce the problem of computingWq(g)
for g = 3, 4, 5 to the study of the real roots of a real polynomial of degree ≤ 4. A key
ingredient is that for such a polynomial, we have explicit formulas for the roots in
terms of radicals. In particular, this method does not carry over to g ≥ 6.

Exercise 6.1. Provide an independent implementation of Jun Jie Lin’s result in SageMath.
Check the output against the built-in algorithm. Do the output match?

Exercise 6.2. Can one use Sturm’s theorem to determine Wq(g)? The statement of Sturm’s
theorem can be found in several texts. A version valid also for polynomials with multiple roots
is in [Tho41].

Further reading material about abelian varieties

• Milne - online notes on Abelian Varieties,
available at https://jmilne.org/math/CourseNotes/AV.pdf
• Chapter 2 of [Wat69], available at http://www.numdam.org/article/ASENS_1969_
4_2_4_521_0.pdf

• (draft of the) book on abelian varieties by Moonen, Edixhoven, van der Geer
see https://www.math.ru.nl/~bmoonen/research.html#bookabvar
and http://van-der-geer.nl/~gerard/AV.pdf
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521–560. MR 265369

Stefano Marseglia, Laboratoire Jean Alexandre Dieudonné, Université Côte Azur, 06108 Nice
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